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Foreword 

The opening of the space age had the effect of reviv- 
ing interest in the field of celestial mechanics, which 
had been somewhat neglected in the first half of the 
20th century. Stimulated by the early artificial earth 
satellites, the revival began with the simplest problems 
of spherical astronomy and orbit theory; then it ex- 
tended into problems of special and finally general 
perturbations. During the last few years the problem 
of the figures of the planets and its connection with 
their rotations has come to the fore, partly because of 
its relation to the shape of the Earth and partly be- 
cause of the idea brought forward by D. U. Wise and 
others that the Moon may really have come out of 
the Earth. 

Just as it was necessary to rediscover and reprint 
the great treatise of Tisserand from the 1890’s for 
many of the problems of celestial mechanics, so also, 
I feel, it will be useful to bring out this summary of 
the problems of the figures of rotating bodies as it 
stood in the mid 1930’s. Hagihara, whom I am proud 
to count as a friend, has done the scientific world 
a great service in bringing these scattered works 
together, summarizing them, and presenting their 
consequences. 

The work of Lyttleton, Chandrasekhar, Roberts, 
Levinson, and others has recently further advanced 
the subject. Nevertheless, this comprehensive and 
thoughtful review, by a powerful mathematician, of 
the situation as it stood in 1935 will be of great value 
to the new student of the subject. 

JOHN A. O’KEEFE 
Goddard Space Flight Center November 1969 
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Preface 

These are the lectures delivered before the staffs of 
the Smithsonian Astrophysical Observatory. Since 
the time for the lectures was limited, I could not 
treat the equilibrium figures of a heterogeneous 
rotating fluid and the difficult problem of the stability 
of such equilibrium figures was also left out. PoincarC’s 
theory of dynamical tides is included as Appendix A. 
Both materials are taken from my lecture notes at 
the University of Tokyo. 

On this occasion I would like to express my gratitude 
to Dr. Fred M. Whipple, director of the Smithsonian 
Astrophysical Observatory, for his kind invitation and 
warm hospitality. Appreciation is also due to NASA’s 
Goddard Space Flight Center for accepting this manu- 
script with its difficult typography. 

Y. HAGIHARA 
Tokyo 
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Introduction 

Preliminary theories of the figure of a star as an eqdibrium figure of a rotating, homo- 
geneous fluid mass have been treated since Newton by Maupertuis, Maclaurin, Simpson, 
Clairaut, ‘and Euler. Laplace and Legendre invented a new class of functions and solved 
Clairaut’s problem. Jacobi (1834) discovered an ellipsoidal equilibrium figure with three 
unequal axes, which was thought to be curious in those days because it rotates, and Liou- 
ville, Smith, and Plana proved its existence as an equilibrium figure. Thomson and Tait 
considered various other figures without proving their existence. It was Tchebycheff (1882) 
who proposed the problem how the equilibrium figures of a rotating mass of incompressible 
fluid vary as the rotational speed gradually increases. Liapounov (1884) and PoincarC (1885) 
solved the problem independently. 

When the angular speed is zero, the only stable figure is a sphere. This is Liapounov’s 
theorem. Recent proof of the theorem is based on the rigorous existence theorem of the solu- 
tion of a corresponding isoperimetric problem in the calculus of variations. As the angular 
speed increases, a Maclaurin spheroid becomes an equilibrium figure. As it increases further, 
a Jacobi ellipsoid with three unequal axes appears as a stable equilibrium figure; then, a 
pear-shaped figure appears as an equilibrium figure. Thus PoincarC, basing his discussion 
on theiexpansion in Lam6 polynomials, instead of Legendre polynomials as in the case of 
a sphere, initiated the idea of linear series of such equilibrium figures and the notion of the 
exchange of stability at the junction of the Maclaurin spheroids and the Jacobi ellipsoids, 
which he called the bifurcation point. As the angular velocity increases from this point, the 
Jacobi ellipsoid is stable, and the Maclaurin spheroid is no longer stable. A further increase 
of the angular speed leads to a new bifurcation point where a new linear series for pear-shaped 
figures appears. But Poincar6 concluded that these pear-shaped figures were stable, and 
Liapounov concluded that they were unstable. Darwin (1902) thought that he had confirmed 
the Poincar6 conclusion by inventing very complicated ellipsoidal harmonics for the dis- 
cussion, but, since he omitted a term larger in magnitude than the terms he computed, his 
final conclusion was erroneous. 

Liapounov, because he had reached a conclusion opposite to that of Poincar6- the greatest 
mathematician in those days- reconsidered the problem with great care. Between 1904 and 
1914, he published a rigorous proof of the instability in a series .of papers in which he con- 
firmed his previous conclusion that a pear-shaped figure is unstable. However, it was neces- 
sary to prove a certain inequality, which he did not prove, but thought most probably true. 

Jeans (1903) considered a corresponding problem in two dimensions and proved the 
cylindrical figure corresponding to the pear-shaped to be unstable; he then proceeded to 
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prove the instability of pear-shaped figures by his method of expansion. The convergence 
of his series was challenged by Baker; however, Baker later found that the series employed 
by Jeans are simply those of Liapounov in his final method of 1916. BhnG and Humbert 
extended Poincar6’s work to higher harmonics. 

The criterion on which-the stability of &ch eqdibriumfigures is based is that of Dirichlet. 
Liapounov and Poincar6 based their discussions on different modified forms of this criterion. 
However, Poincarh’s criterion was criticized by Schwarzschild (1896). Liapounov’s criterion 
can answer the question of stability even when Poincark’s cannot, just as in the criterion of 
stability in particle dynamics (Liapounov, 1949). 

Ring-form figures of equilibrium were discussed by Laplace (1859), Maxwell (1859), 
Mathiessen (1859), Kowalewski (1874)’ Poincarh (1885)’ and Lichtenstein (1923). Several 
detached figures of equilibrium were discussed by Darwin (1906), Lichtenstein (1923,1933), 
and his pupils Holder (1926, 1933) and Garten (1932). Lichtenstein’s theory of equilibrium 
figures is based on a nonlinear integro-differential equation developed by Schmidt and 
Lichtenstein. The equations on which Lichtenstein’s theory is based are those that Liapounov 
took as his fundamental functional equations. 

Liapounov further extended his study to the equilibrium figures of a heterogeneous fluid 
mass. His manuscript was published after his death by the USSR Academy of Sciences. Now 
all these papers are published in his collected works. 

The question of the figures of the earth and planets is very important in this connection. 
’We must refer to equilibrium figures of a heterogeneous fluid mass such as those recently 
developed by Dive and Wavre. Moreover, the dynamical figure of the earth is not one of axial 
symmetry but involves tesseral harmonics, as observations of earth satellites show. Recent 
developments in the study of the earth’s interior reveal a complicated feature with stratifica- 
tion, electric current, and a magnetic field. 

The most interesting application of such equilibrium figures is to cosmogony with the 
supposition that a star might be divided into a system of double stars or have a ring or nebular 
arms around it by an increase in its angular speed of rotation with constant angular momen- 
tum. Laplace, Poincarh, Darwin, and Jeans developed their cosmogonical theories on these 
assumptions. Recent advances in astrophysics, however, make such theories unsatisfactory 
unless an essential improvement can be made in the physical aspect of the problem. 

Thus the theory of equilibrium figures of a rotating, homogeneous, incompressible fluid 
mass should be considered a preliminary approach to understanding such natural phenomena. 
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CHAPTER I 

General Properties of Equilibrium 
Figures 

THEOREMS FROM POTENTIAL THEORY 

Green’s Formula 

Let x(t) ,  At), be continuous functions in a closed interval (0, T ) ,  such that x( t l )=x( t z ) ,  
y(t1) =y(a) ,  and z ( t l )  =z( tz )  for tl = t z .  Then the locus of the point with coordinates x ( t ) ,  
y ( t ) ,  z ( t )  is continuous. If x ( O ) = x ( 2 7 ~ ) ,  y(O)=y(2~) ,  and z ( O ) = z ( 2 ~ ) ,  then the curve 
is said to be a Jordan curve. Similarly, we define a Jordan surface by using two Gaussian 
parameters p and u instead of the parameter t. Any closed surface that can be mapped con- 
tinuously on the surface of a sphere in a one-to-one correspondence is said to be a Jordan 
surface. Any closed solid bounded by a set of Jordan surfaces, such that a plane can be drawn 
at any point on the surface in such a way that the whole solid is on one side of the plane, is 
called a convex body. A regular surface is such that the coordinates x=p(p,  v), y=+(p, u ) ,  
and z=x(p ,  u ) ,  and their first-order derivatives are continuous with respect to the two 
Gaussian parameters, and that 

Consider a regular region bounded by a regular surface. Let X, Y, Z be continuous both 
in the solid T and on the bounding surface S and continuously or piecewise differentiable 
on S. Then we have Green’s theorem (otherwise known as Gauss’ theorem or the divergence 
theorem): 

or 

3 



4 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS 

and Stokes' theorem 

Consider X continuous with its first-order derivatives; then 

Put X=UIVl, VI = dV/dx; then 

Adding three such formulas gives Green's formula 

Interchanging U and V and subtracting these two formulas gives 

where an is measured in the direction of the outward normal to the boundary surface. If 
AU=O andAV=O, then I ( u E- v ") & = O .  an an 

If we put U =  1, then 

If AV= 0, then from equation 3 we get 

Hence, the integral of the normal derivative of a function, which is harmonic and continuously 
differentiable, integrated over the boundary of a regular region is zero. Conversely, if the 
integral of the normal derivative of a function integrated over S is zero, then the function is 
harmonic in T. 

Setting U= V= U1 in equation 1 gives 
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Further, if AU = 0, then 

The right-hand integral is called the Dirichlet integral. 

Harmonic Functions 

A function U is called harmonic when it satisfies the following conditions: 
(1) It is continuous together with its first-order derivatives. 
(2) Its second-order derivatives exist and are, in general, continuous (if they are dis- 

(3) AU=O. 
In Gauss' mean: let U be harmonic and MO be a point in a domain and construct a sphere 

Z within that domain with Mo as its center. Let Uo be the value of U at Mo. Then the mean 
value of U over the spherical surface with radius r-o= JUdcr/4~l.2-is equal to UO, whatever 
the value of r. 

In Gauss' theorem, a harmonic function can be neither a minimum nor a maximum inside 
a domain T except on the bounding surface S. 

As a corollary, let g and h be the maximum and minimum respectively of a function 
U within T; then h < U < g within T,  and h U G g on S. If U is zero at infinity, and T extends 
to infinity, then U is everywhere zero, because both g and h are zero. Conversely, if U is 
continuous within a closed domain T and the value of U at a point inside T is equal to the 
mean value of U on the spherical surface with the point as center, then U is harmonic (Koebe, 
1906). 

continuous, the discontinuities are on an algebraic surface-piecewise continuous). 

From Gauss' theorem expressed by equation 4 we have the following theorems: 
(1) If U is harmonic and continuously differentiable inside a regular domain T and 

vanishes at all points of S, then U vanishes at all points of T.  
(2) Any function that is harmonic and continuously differentiable inside a regular domain 

T is uniquely defined by its value on S. 
(3) If the normal derivative on S of a function U,  which is harmonic and continuously 

differentiable inside a regular domain T ,  is zero at each point on S, then U is constant in T. 
Such a function can be uniquely defined by the normal derivatives on S apart from an additive 
constant. 

(4) A function U defined by the relation 

where h, g are continuous on S and h 2 0, is uniquely determined. 
A Newtonian potential is a function that meets the following conditions: 
(1) It is continuous at all points in space. 
(2) Its first derivatives exist and are continuous both inside and outside of S, but are 

discontinuous in passing across S; the tangential derivative is continuous while the normal 
derivative is discontinuous. 

(3) AU=O outside S. 
(4) AU is arbitrary inside S. 
(5) U=O at infinity. 
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The foregoing leads to the theorem that a function which is harmonic in a closed regular 
domain T + S and is continuously differentiable is a Newtonian potentiaL 

Simple and Double layers 

Set V = l l r  in equation 2,  where r=  V ( X - [ ) ~ +  (y-r))Z+ (z -g )? ,  and P ( x ,  y, z)  is a 
point outside T. This function V ,  as a function of integration-variables (5,  r ) ,  g), satisfies the 
Laplace equation AV=O. From equation 2 we obtain 

If P ( x ,  y, z) is inside T, this formula fails because P is a singularity of V. Draw a small sphere 
2 around P, with radius h as shown at the right,Ap-ply equation 2 to S and 2 and to the space 
T* between S and Z; then 

1 y d T = - l [  U - - - -  an r a n  

On Z we have a/an=-a/ar and da= h2 sin 8d8dp. Thus 

Hence, 

We have 

Hence 

Therefore 

In particular, if AU= 0, then 
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Next suppose that point P is on S. Draw a sphere 2 with P as its center and with radius h. 
Let the part of 2 inside S be 21, and the region between S and 21 be SI. We apply equation 2 
to S1, and make h+ 0. As 

We say that J Jp,r*dcr is the potential of a simple layer, and - 
is the potential of a double layer. As we have seen, any potential consists of the potential 
of a simple layer of density ( 1 / 4 ~ ) ( a U / d n )  and the potential of a double layer of moment 
U/4rr. The potential of a simple layer is continuous, but the potential of a double layer jumps 
by a finite amount in passing across the surface, such that 

Wi= Ws+ Z T V ~ ,  We= w s - 2 ~ ~ ~ ;  

therefor e 
We- W ~ = - ~ T V S .  

Now we consider the normal derivative. Take a point Q on S and let the inner normal be 
nQ; then, take a point P on nQ. We have 

Furthermore, because 

we have 

Denote the variable normal in the integration over s by n R ,  then 
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We can prove that the second integral C remains unaltered in passing across S. (See, for 
example, &on, 1899; Bouligand, 1926; Sternberg, 1925b; Poincark, 1899; Kellogg, 1929; 
Gunther, 19%.) 

or 

If 

then inside S, 

outside S, 

Take a Newtonian potential 
v = p  

T i  
or 

if the volume distribution is continuous with volume density p ,  or 

if the surface distribution is continuous with surface density p. Potential V is continuous 
with its first derivative in the whole space and satisfies AV=O outside the attracting mass, 
and satisfies A V = - k p  at a point of density p.  The second derivative is discontinuous on 
the boundary of two different media. The derivative of V is discontinuous on the surface 
itself. Take two lengths AB=dne and AC=dni on the normal at a point A on S; 
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On the other hand, 

where p is the density of the attracting mass. The tangential derivative, however, is con- 
tinuous. If the layer is double, then 

Hence we obtain Liapounov's relation 

aw aw - + - = O ,  ane ani 

In this case, the tangential derivative is discontinuous. Hence any function that is harmonic 
and continuously differentiable in a closed regular domain T + S  can be represented as the 
sum of the potentials of a simple and a double layer on S .  

Dirichlet's Problem 

It is required to obtain a function V such that 
(1) It is regular at all points of T and continuous with its normal derivative as we approach 

(2) It satisfies AY=O at all points of T,  and 
(3) It reduces to a given function F on S.  

the boundary S ,  

This is called the Dirichlet interior problem. When we consider instead of T the space outside 
S extending to infinity and add a further condition that V vanishes at infinity, then this is 
called the Dirichlet exterior problem. In these cases, the function F is given on S; this is the 
first boundary value problem. If, instead of the given function V on S ,  aV/an should reduce 
to a given function F on S ,  then this is the second boundary value problem. If k(aV/an)+hV=F 
is given on S ,  then this is the third boundary value problem, where k ,  h, and F are continuous 
and k and h are positive. The second boundary value problem of Dirichlet is sometimes 
called the Neumann problem (PoincarC, 1899; Gunther, 1934). 

The solution of the first boundary value problem inside a sphere is given by 

where h is the radius of the circle. In fact, the first integral is the potential W of a double 
layer, and the second that of a simple layer; both integrals are regular inside the sphere. 
When P ( x ,  y, z )  approaches S ,  the potential W takes the form 

375-031 0 - 71 - 2 
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Since cos ( r ,  n )  =r /2h on S, we have 

But 

Hence, 

Let R 2  = h2 + r2 - 2hr cos ( r ,  n )  ; then 

cos ( r ,  n )  1 h2-R2  --=- 
r2 2hr 2hr3 ’ 

and we have 

This is called the Poisson integral. 
The Green function G is a function of two points P (x, y, z )  and Q(t,r), C), where P varies 

inside T and Q varies inside T and on S. Function G is regular in T except at P as a function 
of 5, r ) ,  5, and represents continuous potential in T + S .  It becomes infinite in the order of 
the reciprocal of PQ at point P ,  such that 

is a regular potential at P,  and vanishes at all points Q of S and at all points P of T. To deter- 
mine function G is one of the first boundary value problems because W takes the known 
value - l / r  on the boundary S. Let u be regular in T and be continuous with its first normal 
derivative as we approach S, then from equations 6a and 2a 

where 

G= l / r +  V. 

The Green function has a reciprocity relation 
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G = - - - - .  1 r R h l  r' 

~ P '  4 / R'=hyR 

inside a sphere. 
Physically speaking, V i s  the potential of the induced charge 

on the conductor S by a unit charge at P, and the Green function 
G is the value at Q of the potential due to the induced charge 
and the charge at P. This circumstance was the basis of the proof of the existence of the 
Green function by Green, Kirchhoff, and Thomson. This was challenged by Lebesgue. The 
rigorous mathematical proof of the existence of harmonic functions was discussed by Gauss, 
Riemann, Dirichlet, Weierstrass, Hilbert, Schwarz, Neumann, Hadamard, and Poincark, in 
connection with the existence of analytic functions on the Riemann surface (Courant, 1950; 
Weyl, 1923). Recent development - in particular, the theory of capacity- deals with bound- 
aries with discontinuous normals on the point-set theoretical ground (Kellogg, 1929). 

Consider the first interior boundary value problem. The required function is given on 
S such that ui=F.  The potential of a double layer is 

o-- _- - - 

and we have 

where rus denotes the distance between u and S. Let 

then 

1 cos (rus,  nu) . 
K ( S ,  u) =- 2 9 27r TLTS 

The kernel K ( S ,  u) becomes infinite in the order of l/rus as u + S, because 

is bounded on S. In this case, the iterated kernel 

is shown to be bounded on S even when u+S. If the moment v ( S )  of the double layer is 
known by solving the integral equation, then the potential u is known. 
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For the second boundary value problem, we are given 

Take 

then 

For the third boundary value problem we are given 

aui -+ hui = F .  an 
Let 

then 

Thus the boundary value problem is reduced to the solution of an integral equation of Fred- 
holm's type (Plemelj, 1911; Neumann, 1905, 1912; Kneser, 1922; Wangerin 1922; 
Kellogg 1929). 

Poinear& Formula 

Let V l ,  Vz be functions of the nature of potentials; VI depends on pl in TI +SI, and Vz 
depends on pz in T z + S z .  In the whole space, 

f VzAV,dT+f ( aV2av,+ ax ax . . .)dT=O. 

In fact, we draw a large sphere C with the coordinate origin as 
center and large enough to include both TI and Tz. In the space T 
between S1 and 2, equation 1 reduces to 

As we increase the radius, Vz is of order 1/R on S and 

av, av, 
an aR 
-=. 

is of order 1/R2, and du= R2&, where dw is the element of a solid angle. Hence 
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/ V2 $ dcr is of order 1/R. 

Next apply Green's formula in SI+ TI: 

On S, we have 

Hence by adding these two we obtain 1 Vz AV1 dr + 1 ( fi ax a+. ax . .) dr=O. 

By exchanging V1 and Vz, and by subtracting the result, we get 

( V Z A V I - V I A V ~ )  dr=O, or / (plV2-p2V1) dr=O. 

p1=0 outside T I ;  p2=0 outside T2. Hence 

13 

This formula is analogous to the case of electricity in which 2 mlVz -2 rnzVl=O. If we let 
Vz= Vl + dV1, p2= pl + dpl,  then 

Suppose that a system of  masses m', m", . . . attracts another system of masses 
mi, my, . . . . Let 7 ,  y ,  . . . be the potentials at the points m', m'', . . ., due to all the 
attracting masses mi, my, . . ., and V' ,  V", . . . be the potentials at points m:, my, . . . 
due to all the attracting masses m' ,  m", . . . . If the attracted mass is displaced, then the 
work done is 

Let H=ZmVl; then E=SH. If the attracting mass is displaced, then V1 changes to 
VI+ S'V1 and 6'H=ZmlS'Vf. If these two displacements occur simultaneously, then 
E =  SH+ S'H. Denote the volume of the attracted masses by T ;  then 
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Since p = 0 outside T, we can extend this integral to the whole space. We have 6H = $pSV1dr. 
If the attracting mass is the same as the attracted mass, then V=V1 and 6H=JpbVdr. 
By equation 10 we have 

6H= I pSVdr = I pa'+ v6p dr. 
2 

Let W= $(pV/2)dr. This is the energyof the system. We have6W=E, butAV=-hp. Hence 

W=-- VAdT. 
871. 'I 

From PoincarC's formula, equation 8, we get finally 

W = L f [  871. ($y+($) '+($) ']dr .  

GENERAL PROPERTIES OF EQUILIBRIUM FIGURES 

Hydrostatic Equilibrium 

Consider a mass of incompressible fluid rotating around a fixed axis without any external 
force. Take the rotating axis as the z-axis and assume that the angular velocity of the rotation 
is a constant w .  The x- and y-axes are fixed in the fluid mass, and the center of mass is on 
the z-axis. Take the center of mass as origin. Then denote byp the pressure at a point (x, y ,  z )  
of the fluid. The pressure p depends only on x, y, z. The force acting on a volume element of 
the fluid is 

where X ,  Y ,  Z are the components of force acting on the molecule at the point (x, y ,  z )  . Then 

av av 
X=pY+w'px;  ax Y=p-++2py; aY z=p-* az 

We obtain the condition of relative equilibrium, by writing U =  V+ ( w 2 / 2 )  (x' + Y 2 )  , as 

From these we have 

Hence, 
dp =pdU. 

If du=O, then dp = 0, and therefore p is a function of U only. The density p is also a function 
of U only. The surface U =  constant is called the "level surface." Consequently the level sur- 
face is the surface of equal pressure and also the surface of equal density. 



PROPERTIES OF EQUILIBRIUM FIGURES 15 

On the surface S the pressure p = O ;  hence U is constant on S, and the free surface is 
accordingly a level surface. If there is no rotation, then U = V .  In general AV= - 47rp; this AV 
is a function of U .  If the surface consists of several pieces of surfaces, then on each of the 
surfaces Si, we have 

0 2  

2 U = V + -  (x2++y2) is a constant; 

that is, the equation for the surface is U=constant. U has the property of a potential, and 
the gravity 

(32 + ( 32]1'2 
is zero nowhere on the surface. Thus aU/ax, aUlay, aU/az cannot vanish all at once. Suppose 
that aV/azPO. Then U =  V + ( w 2 / 2 ) ( x 2 + ~ )  can be solved for z, and S is a regular surface. 
The surfaces U =  constant, p = constant, p = constant coincide and become what is called 
the "equipotential surface." The force is directed normally to the equipotential surface. 

Symmetry Plane 

Theorem: z=O is always a symmetry plane of the body T. 
For proof, we take the locus Z of the middle point of the chord 

parallel to the rotation-axis. When the chord intersects at more 
than two points with S ,  we take the middle point of the chord 
inside S. If C is not a plane, then there is at least one point 
Q (XO, yo, zo) inside T or on S ,  such that this zo is the upper bound 
of all values o f t  of 2 and there is at least one point Q on C whose 
z is smaller than 20. At first suppose that Q is inside of T. The 
straight line x = x o ,  y= yo intersects S in a finite or an infinite 
number of points. Let Pl(x0, yo, ZI), Pz(x0, yo, 22) be such points 
which are the nearest to Q(xo, yo, 20). Suppose z1 > Z Z  then 
[V(x,  y, z)]+ (02/2) (z2+y2) is constant in each component of 
S. Hence 

where L is a straight line parallel to Oz inside of T. Let the inter- 
section of L with S be z', 2"; and r (z ,  21) the distance of the points 
(x, y, z) and (xo, yo, 21); and r ( z ,  22) the distance of the points 
(x, y, z) and (360, yo, a). The centers of mass of two chords (z'z") 
and (zlzz) have a common z-coordinate. In fact, by our assumption, 
r (z ,  21) > r ( z ,  2 2 )  for every z. Hence 
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From equations 13 and 14 we should have 

This contradicts equation 12. 

of 2 is attained at a point (xo, yo, zo) on S. If the gravity at (xo, yo, zo) is zero, then 
We must next consider the case when the upper bound of the z-coordinates of all points 

If the gravity at (xo, yo, t o )  is not zero, then S has a continuous normal both at (XO, yo, 20)  

and near (xo, yo, 20) .  Then the straight line x = x o ,  y=yo must touch S at (xo, yo, 2 0 ) .  Hence 
in this case, too, we should have ( a / a z ) U = O  and (a/az)V=O. This relation is impossible. 

It is permissible in the case of a cylinder that V is independent of z. A cylinder has a 
symmetry plane perpendicular to Oz; hence 2 is one plane region. Accordingly S has a sym- 
metry plane perpendicular to the z-axis. As we have taken the center of mass of T as the or i jn ,  
this is the (xy)-plane. Since the rotation axis is perpendicular to the symmetry plane and 
passes through the center of mass, this is one of the principal axes of the body T. 

As a corollary, there are only two points in which the straight line parallel to the rotation 
axis meets the surface S. 

When there are several components of S ,  they are not situated in the direction parallel 
to the z-axis, but in the direction perpendicular to it. If several components have a common 
point, the point should be on the symmetry plane. A straight line passing through this point 
and parallel to the rotation axis does not intersect any component of S. Each component 
mass of the fluid consists of only one boundary continuum; it has no hollow part (Lichtenstein, 
1928, 1918). 

Gravity 

Theorem: Any point where gravity vanishes lies on the plane z=O. 
Take a point (x', y' , z') with z' > 0 on S. Denote the part of T which is above z' by a', 

and its image with regard to z=z' by 0'. The component along the straight line x=x', y=y' 
of the attracting force of 0' + 0' at (x', y' , z') is zero by symmetry. The component along that' 
direction of the force due to T - 0 '  -8' is certainly negative. Consider that (a /az)V(x' ,  y', z') 
<O; hence (a/az)U(x', y' , z') < 0. The equality must occur on z = 0. 

Theorem: Gravity is directed everywhere inward. If T consists of several bodies and each 
of the components has continuous normals, then the bodies cannot have common points 
but must be separated. The gravity at a common point is zero, and the common point is a 
point of discontinuity. 

Let a point of S be P (x, y, 2 ) .  The Green function G (2,7, i; x, y, z )  has continuous partial 
derivatives of the first order on S as a function of x, y, z. The derivative(a/an)G(f, 7, i; x, y, z )  
is continuous, and G(z, 7, i; x, y, z) > 0 for a point ( ~ , j i ,  i) inside T. Hence (a/ani)G(Z, 7, i; 
P )  5 0; I shall prove that only the inequality holds. 

Take a point (x,y, g) on the normal, very near point P .  We can write G(E,  _y, g; x, y, z )  
= l/_r+g(_x, 2 , ~ ;  x, y, z ) ,  where r is the distance between (E, 1, .> and (x, y, 2 ) .  Gravity g is 
continuous inside T and on S, a i d  regular in T ,  and takes the value - [ ( ~ - x ' ) ~ +  ( y - ~ ' ) ~  
+ ( 4 - ~ ' ) ~ ] - l / ~  at ( x ' ,  y' ,  z ' )  on S. This is negative and takes the minimum value at P. 
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Hence (a/ani)g(_x, 2, 5 ;  P )  > O .  The normal derivative of l/r at P is positive. Therefore 
(alani)G(x, 2 , ~ ;  PI > 0. 

We can prove that (a/ani)G(Z, j i ,  i ;  P )  > O  at any point (a,  j i ,  i )  inside T. In fact, 
(a/ani)G(%, j i ,  Z; P )  is a regular potential function if P is fixed. This cannot have a minimum 
inside T. The derivative aG/ani is equal to 0 on S and 2 0 inside T. Hence inside Tit should be 
either always positive or always negative. At a point (x, - _ -  y, z) we have shown that dG/ani > 0. 
Thus it should be always aG/ani > O  inside T. 

By the reciprocity relation of a Green function, we have G(x, y, z; 3, p, z)=G(%, p, E ;  x, y, z), 
and hence (a/ani)G(P; x , ~ ,  2 )  > 0. By writing AU=-4rrp + 2w2 after differentiating equation 
17 which will be proved immediately we obtain 

aU=-- a G ( P ;  x, y, z )  (2w2-4rrp)dr. ani 4rr   ani 

Since (a/ani)G(P; x, y, z )  > 0,  aU/ani > 0,  if 2w2 < h p .  
Since the gravity. should be directed inward at the contact point, it should be zero. 

Hence, the curvature should have a discontinuity at the contact point; that is, there is a 
conical point as in Darwin’s conjectural double-star model (1906,1910). 

Angular Velocity 

A sufficient (though not necessary) condition for equilibrium is that the force at every 
point of the free surface be directed inward. Otherwise the equilibrium would break down. 
Hence 

therefore 

From equation 3 we have IT AUdr < 0. 

Therefore 

IT AVdr + IT 2w2dr < 0. 

Hence, 

- 4 ~  pdT+ 2w2d7 < O .  
fT f T  

Let M be the mass, and T be the volume. Then -471.M+2wPT < 0. If the density is p,  then 

This is called Poincarb’s inequality (1885). The inequality dU/ani > 0 has been proved under 
the assumption 2w2 < 4rrp, and the latter inequality has been proved by Poincarh under the 
assumption aula% > 0. 
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We shall examine whether the gravity becomes zero at some points although the proof 
is unnecessary if S is continuously curved. 

(I) U ( x ,  y, z )  = V ( x ,  y, z) + (02/2)  (xZ++y2) should have a constant value on each of 
the components. 

(II) If the fluid cannot stand any tension (Zugspannung), the gravity should be directed 
inward or be zero on the surface S. 

Proposition I1 follows as a necessary condition from Proposition I. If Proposition I is 
satisfied, the pressure exists in the whole T, and equilibrium takes place; that is, it is a 
sufficient condition to achieve equilibrium. Let us proceed to the proof according to Lichten- 
stein (1918). 

If w2 > 2 ~ p ,  then Proposition I is not satisfied; U =  Y +  ( 3 / 2 )  (x2+ +y2) takes the value 
Uo on S, and AU=- 41rp + 209 inside T. Take a point (a, 7, 2) inside T and let the Green 
function at (a,  7, Z )  inside T with respect to T, which vanishes on S, be &(a, 7, i; x, y, z ) .  
Obviously Go(3, y, .z; x, y, z )  > 0 for all pairs of points (a, 7, Z )  and (x, y, z )  inside T. We 
then have 

Let W assume a value such that AW= 0, and let W +  l / r=  G. From equation 2,  

- I  WAUdr=/  ( U g -  W y d u .  an 

From equation 6 we have 

1 
4 d J = - ]  (U a, --- l a  T d u - ]  y d r .  

an r a n  
Hence, 

But from equation 6b, 

Accordingly, 

U = Uo - GoAUdr. 
471- I 

If we suppose w2 < 2mp, then by equation 17, U ( 3 ,  7, Z) > Uo at every point ( x ,  y, z) 
inside T. Since the external pressure is zero on the boundary, pressure always exists inside T 
because of this inequality. Hence, the proposition has been proved. 

If w2 3 ?rp, then an equilibrium figure cannot exist for a convex body. The proof is based 
on the extremum property discussed in Blaschke (1916). 

Crudeli (1909, 1910) obtained a sharper limit than the one in Poincarh's inequality. 
We have at first U =  V +  (w2/2) (x2 + y2) = C,'aU/an < 0, and AU= constant inside T. 

From equation 6 
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Substituting AU= AV+ 2w2= 209 -47i-p (if p= const.) gives 

47~U=4rrC+/~ $ d u -  2w2-47Tpv, 
P 

19 

because U = C on the free surface S ,  and 

Denoting the inner normal at a point A of an equipotential surface by ni and alllerentiating 
the above equation give 

where r is the distance between an inside point P on the normal ni and the point A .  At the 
point A ,  this expression is 

But from equation 17 where we write-p=aU/an, we have 

where As= ro. Hence, we obtain 

By the relation 

we have 

Let A + S ;  if A is the point where the tangent plane to S is perpendicular to the rotation 
axis, that is, where 
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then at that point A 

Where, 

cos (ro, ni) >O, aU/an < 0. 
Hence, 

d a  < O .  a U  cos (To, ni) 

Consequently 

and 

Thus we get Crudeli's inequality 
0 2 -  rrp < 0. 

0 2  < rrp. 

As a corollary, this relation holds true for an elliptic cylinder (Tisserand, 1891, p. 107), be- 
cause, from ~ ~ = 4 r r p [ a b / ( a + b ) ~ ] ,  we get 

By computing gravity, von Zeipel (1898) showed that 

because gravity on the equator 

3 arctan E - E ( ~ - G ~ )  ] < O .  
(3 + E ~ )  arctan E - 3~ 

Nikliborc (1929) showed that Crudeli's inequality holds even when the equilibrium figure 
consists of a finite number of bounded domains. 

Ellipticity 

We first prove that 

The integral on the left-hand side taken over the volume T of the sphere drawn with the 
center at the point in question is equal to the right-hand side. Let the radius of the sphere 
be R and the domain common to K and T be K1. Then, 
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Combinihg these two equations provides the formula we are to prove. Since 

we have 

Similarly, 

Hence 

Now let B be a point on S and assume that the gravity reaches its maximum at B; B is 
obviously on the symmetry plane. The gravity at B is either directed inward or equal to zero. 
The centrifugal force at .B cannot be larger than the attracting force. Hence 

Hence, 

Accordingly, the equilibrium figure is inside the circular cylinder of radius a0 (Schmidt, 1914; 
Lichtenstein, 1918). Mazurkiewicz (1926) proved that if b > a, then 
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where a is the distance from the rotation-axis and 2b the thickness of the figure in the 
z-direction. 

Nikliborc (1931, 1933) proved that if the meridian section of the figure of the spherical 
type is monotonous for z > 0, then the ellipticity b/a < 10 and furthermore, that for a figure 
for which the highest point lies on the z-axis, bla < 5. For a plane figure, Nikliborc (1932) 
and Blaschke (1932) proved similar theorems. 

Merlin (1935) proved that 

where J is the moment of rotation around the Oz-axis. 

Stokes' Theorem (Tirserand, 1849) 

Suppose that the density distribution inside T is arbitrary and that the level surface S 
is defined by 

1 
2 u= v+- &(XZ + y2) = c, 

with the mass M contained inside S. Then by Gauss' theorem, 

/ s ~ d ~ = / A V d r = - 4 n -  I pd7=-4n-M 

in an interior point, and AV=O in an exterior point. We vary the mass distribution inside 
by keeping the level surface S fixed, and of course with M fixed. Denote the resulting-varia- 
tion of V by V', that of U by U',  and that of C by C'. On S ,  we have U'=C' ,  and 

$ d a =  - 47rM. 

Outside S ,  we have A V  =O. Write W =  V -  V ,  then on S we have W = C -  C ' ,  and 

Is dcr = 0.  

Outside S ,  we have 
AW=O. 

Draw a sphere C. with a very large radius R so that the whole of S is contained within 
the sphere. In the space T between C. and S we have by Green's formula, equation 5, 



PROPERTIES OF EQUILIBRIUM FIGURES 23 

tends toward zero in the same order as 1/R, as R+m. Therefore, we obtain 

Hence W =  constant in T'. Since lV becomes zero at infinity, this constant is zero. Therefore, 
W =  V- V' =0, and V =  V'. Stokes' theorem states that the potential Vis determined uniquely 
by S, o, and M. Accordingly, U is determined uniquely by S ,  o, and M and does not depend 
on the mass distribution inside S. 

Similarly, the direction of the principal axes of inertia, the moments of inertia, and the 
products of inertia are determined uniquely by S, o, and M. In fact, 

ZI= x p d r = - G I T  1 xA6dr .  
IT 

By Green's formula, 

since Ax= 0. But on S we have Vi= V ,  aVi/dn= aV/an. Hence, Z1 is determined uniquely 
by the uniquely determined Y given in the theorem. We get similar results for 

and accordingly the center of mass is determined uniquely. Similarly, we can determine 
uniquely 

and IT (zz - xz) pdr. 

These six quantities determine uniquely the principal axes of inertia and the principal 
moments of inertia. We can determine the value of V at any interior point when S ,  w, M, 
and the value of V on S are given. This is a boundary value problem called the generalized 
Neumann-Dirichlet problem (Crudeli, 1909, 1935). 

We know that in the exterior space AV=O. From equation 2a, we have 

We approach a point Q(m, yo, zo) on S by remembering that U = V +  (02/2) ( x 2 + y 2 ) ;  then 
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By equation 7a we have 

1 a-  1 a-  r 
an lim Is VS - da= - 2n-V0+ 

From equation 18 and aU/an < 0, we see that 

Hence, 

If w2 f n-p, then 

Thus this reduces to the integral equation of the Fredholm type 

If Ipl < , then this equation has no eigenvalue (Plemelj, 19M, 1907, 1911; Kneser, 1922; 
Kellogg, 1929; Goursat, 1923). Poincark’s inequality states that W2ln-p < 2. Hence, 

If p is an eigenvalue, then we denote by Yl ,  . . . Y ,  the linearly independent solutions 
of the homogeneous integral equation 

It can be proved that 

IsY#du=O ( k = l , 2  . . . ,m). 
Hence, even when p is an eigenvalue, the solution of the nonhomogeneous integral equation 
exists, provided that there are m solutions instead of one. This is the case of bifurcation. 
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Thus we can determine V when S, w, M ,  and the value of V on S are given. This is called 
the Stokes problem. 

The problem of obtaining the surface S when the values of g over the whole surface S are 
knatvn can be discussed in a similar manner (Brillouin, 1925; Mineo, 1927,1933). 

This problem of determining S when the distributions of g and dgldn at any point over the 
unknown surface S are given, and where the direction of the normal is known by astronomical 
observations, has an important bearing in geodesy. We do not know yet what is the real 
figure of the earth; we don’t even know where the real center of the earth is. The present 
method of calculation consists of successive approximations, starting with Bessel’s or Hay- 
ford’s spheroid. This is the problem for geodesic satellites which O’Keefe, Kaula, and others 
are working to solve. It is the inverse of Neumann-Dirichlet’s generalized boundary value 
problem. Yet this is one of the unsolved problems in mathematical physics (cf., Gunther, 
1934). However, recent observations of earth satellites are providing a means for determining 
the observers’ coordinates relative to the mass-center of the earth. 

Hamy (1887, 1889) proved that we can determine the ellipticity uniquely when the law of 
density is given; he also proved that the equilibrium figure of a rotating heterogeneous mass 
cannot be an ellipsoid with three unequal axes but be an ellipsoid of revolution. PoincarC 
(1885, 1902) proved that, if the surfaces of separation of such a heterogeneous mass are ellip- 
soids, then they must be all confocal. Similar problems were investigated by Radau (1885), 
Callandreau (1889), VCronnet (1912), Dive (1926, 1927, 1930), Wavre (1927, 1928,1929), and 
Merlin (1927, 1930). In particular Wavre (1932) led the problem to the solution of an integral 
equation of Fredholm’s type, and Dive (1926,1927) extended Hamy’s theorem. 

Limit of Angular Velocity 

If we consider a body rotating with angular velocity w around a fixed axis, then the 
moment of inertia around that axis is J =  J p d ~ ( x ’ + j ~ ) .  When the body is deformed such 
that the projection of the displacement of a surface element d a  on the normal is 5, then J 
varies by the amount dJ= J 5pda(x2 + y2)  . 

If we let U= V+ (w‘/2) (x‘ +y’), then the Newtonian potential energy is 

where 

Then, 

In equilibrium, U= constant = Uo on the surface S. Then, 

dW+c d J =  Uo [ p d a =  UopdT. 
2 I 

If the body is deformed similarly to itself, then W and J vary as T5I3. Hence, 

375-031 0 - 71 - 3 
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therefore 

Now AU= 2w2 + AV= 2w2 - 47rp. Since we have 2w2 6 47rp from PoincarC's inequality, we 
must have AU < 0. Thus U cannot have a minimum inside T. Since U= Uo on S, we should 
have U > UO inside T. If AU= 0 ,  then U= UO, and if AU > 0, then U < UO in the whole interior. 

Consider the integral J U p d r  = 2 W + ( ~ ~ 1 2 )  ./ . As AU 5 I 0, the left-hand side 

5 @ 2  I U p d r g p  I Uodr=pUo dr=pUoT=-  3 (W+- 2 J ) .  I 
Hence we obtain the theorem 

A U < O ,  5 ( w + $ J ) < Z W + $ J ,  W > w2J; 

( W + $  J )  = 2W+ y 0 2  J ,  W =  w2J; 3 
AU= 0, 

A U > O ,  > 2 W + $ J ,  W < w 2 J .  

Suppose that w varies continuously and the figure deforms continuously if p remains 
unchanged. We have seen that 

dW +- 0 2  dJ + wJdw =- 3 pTdU0, T =  constant. 2 5 

Since the figure is in equilibrium, W + ( w2/2) J is a maximum or a minimum if dW + (o2/2)dJ=0. 
The remaining part is wJdw = (315)TdUo. Hence dUoldw > 0, and UO increases as w increases. 

Since V is a Newtonian potential, we have V =  UO - (w2/Z)(x2+ y)  on S. If the surface S 
intersects the rotation axis, then UO is the Newtonian 
potential at the pole. As w increases, the potential in- 
creases, but Uo cannot be greater than 27rR2, where R is 
the radius of the sphere.of the same volume as the body T. 

If we draw a sphere C of radius R around the point in 
question, we then have three domains, B, K ,  and A .  The 
potential of A at M < A / R ,  and the potential of B at 
M > B/R=A/R.  But the potential of S= the potential 
of K +  the potential of A.  and the potential of Z= the 
potential of K+the potential of B. Accordingly, the 
potential of > the potential of S. Thus 2rR2  > V .  The potential of a sphere is 27rR2p, because 
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4rrR 2dR 
R 

Now dividing W +  (w2/2)J= (315)pUoT and wJdw= (315)pTdUO side by side gives, 

As w increases indefinitely, there would be a time when w2 finally exceeds rr. Then, as W 
we must have 

w2J, 

Hence 
2d0 dUo < -. 3 w uo -- 

If w increases indefinitely, then so must Uo. But Uo < 2rrR2. Hence either w must stop in- 
creasing, or the equilibrium figure does not cross the rotation axis. The latter case is of an 
annular or a detached double-star form. In the former case, there is a limit for the angular 
velocity w. For the spheroidal figure of equilibrium we have w < 4w x 0.112, and for the 
ellipsoidal figure of equilibrium we have w<4.rrX0.093. From this point of view, it is possible 
that there exists a succession of equilibrium figures passing several maxima and minima of 
w in succession. In such cases, the foregoing reasoning cannot be applied, and w can increase 
indefinitely. This reasoning holds only in a successive interval between a maximum and the 
consecutive or the preceding minimum (Poincarh, 1902). 

As a corollary, the axis of rotation of an equilibrium figure with a sufficiently large value 
of w does not intersect the free surface of the figure. It may be either of annular form or of 
detached double-star form. 

Rotation Axis 

We shall now examine whether there may exist equilibrium figures with nonuniform 
rotation. The center of mass is supposed to be at rest; it makes no difference whether the 
fluid is solidified or not. If the fluid is solidified, then the motion around the center of mass is 
a Poinsot rigid-body rotation. By the principle of D’Alembert, the virtual work done by any 
displacement compatible with the constrained motion is zero. The constraint in this case is 
the incompressibility of the fluid, and this is expressed by 

a a a -ax+- ay+- az=o. ax ay az 

There are three kinds of virtual displacement: 

center of mass. 
(1) The displacement of the whole mass as a solid; this is Poinsot’s motion around the 

(2) Deformation of the body. 
(3) Molecules are displaced on the surface of constant density; since the surface of 

equal density is an equipotential surface, we have 
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The surface of constant density remains unchanged by this displacement. Hence the 
external shape remains unchanged. Let us take a point of mass m with coordinates x, y, Z. 
Let the components of the instantaneous rotation around Ox, Oy, Oz be w1, wg, w3; then 

and 

z=  ( 0 3 j - w Z i )  + (h3y-&z), 

j ; =  ( w i - w g i )  + (iC)lZ--Wfl), 

2 = (mi  - O l j )  + (&% - d1y) * 

As in relative equilibrium, there should be equilibrium between the attraction force and the 
force of inertia mx, my,  m i .  Suppose that the rotation axis is along OP (01, w2, w3) at t and 
along OP’ at t + d t .  Let OQ= P P * / d t ,  and suppose that it takes the limiting position OR as 
d t+  0. The projection of OR on the three coordinate axes is &, &, h3. If we take OR as the 
Oz-axis, then & = & = 0. The inertial force due to angular ac- 
celeration has components &y, - &z, 0. We apply D’Alembert’s 
principle to this virtual displacement. Since the form of ,the 
body remains unchanged, the work done by the attraction is 
zero. The work done by the centrifugal force is (wg/2)8J, where 
w2 = 0: + wjj + wj, and, since J remains unchanged this work 
becomes zero. The remaining part &Zm(y6x-~Sy) must be 
zero in equilibrium. Now we can choose the virtual displacement 
so that Zm( y6x - x8y) is not zero. It is sufficient to consider a 
current around Oz. This sum is equal to the area on the xOy plane bounded by the projection 
of this current on that plane, and is not zero. Hence cj3 must be zero, that is, the motion must 
be uniform. Thus it is impossible to have an equilibrium figure of nonuniform rotation (Poin- 
car& 1902). 

Furthermore, the rotation axis must be the axis with the largest principal moment of 
inertia; that is, the smallest axis of the ellipsoid of inertia. This can be proved from the study 
of the rotation of a solid body (Pizzetti, 1913). 

dP’ 

LIAPOUNOV‘S THEOREM 

Liapounov‘s Proof 

Liapounov’s theorem states that a sphere is the only stable equilibrium figure at rest. 
This theorem is said to have been discovered by Giessen (1872). PoincarC proved the theorem 
in his lectures (1902) on the equilibrium figures by referring to an electrostatically charged 
sphere, on the basis of Dirichlet’s criterion of stability. Suppose that the free surface of a 
body T is an equipotential surface V= Vo; then the potential at a point is 
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where V is continuous on the free surface and zero at infinity. We have 

29 

IT AVdr=-44?r pd7=-44?rM. 
f T  

Moreover, 
dV Is an, da=- 4wM 

and dV/dn, < 0. Now consider the distribution of an electrically charged layer of total charge 
M in a suitable unit in equilibrium such that the potential VI on the surface is Yo, the potential 
in the outside space is V ,  and the potential inside the surface is VI = Vo. At infinity, V' = 0. 
The potentials V and V' both satisfy the Laplace equation, and both are equal to Vo on the 
free surface. Hence, because of the property of a potential, these two functions should 
coincide. PoincarC proved the lemmas that the potential of a sphere at its center is the maxi- 
mum of the potential of any body of equal volume, that a sphere has the minimum electrical 
capacity among bodies of equal volume, that the electrical capacity is a minimum for a sphere, 
and that W =  J ( p V / 2 ) d r  is a maximum for a sphere among all bodies of equal volume 
(PoincarC, 1887, 1902). 

Liapounov (1884, 1904) proved the theorem with his stability criterion. Denote the 
moments of inertia by 

( y 2 + z 2 ) d r ,  Sy= ( z z + x z ) d r ,  S,= ( x 2 + y 2 ) d r ,  
f T  

and 
V = p f T T ,  dr ( u 2 + v 2 + w 2 ) d 7  

with the condition that 

where u, v, w denote the components of the displacement. Denote by Jp the moment of 
momentum around the center of inertia, and write 

According to Liapounov, the necessary and sufficient condition of equilibrium is 6II=O. 
If II is a minimum, then the equilibrium is stable (Lejeune-Dirichlet). This criterion of 
Liapounov contains the criterion of Poincarh, (1/2) (J2 - STVdr) =minimum, and can 
define stability, whereas Poincar6s criterion can say nothing about stability. 

Denote by n the shortest distance between a point on the surface of an equilibrium figure 
and its corresponding point on the surface of the distorted figure, counted toward the outer 
normal. Let n = nl + 6 n  and let 
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xSnda= ySndcr= zSndcr=O, Is Is Is Is Snda=O, 

and 
0 2  

2 u= v+- (x2+y2). 

Liapounov obtained 

+a+*, 1 Snsn'dcrdcr', 
SZI'I=-Is (Sn)2dcr-p Is/ r 

S Z  (Is (x2+y2) Sndcr): 

'€'=E (Is xzSndcr)2+$ (Is yzSndcr)2. 

If equation 22 is positive for all displacements Sn satisfying equation 21, and if Sn=- [x 
cos ( n ,  y)=  y cos (n ,  x)]& for o # 0; and if an=- [y cos ( n ,  z) -z cos ( n ,  y>]8,- [z cos 
( n ,  x) -x cos ( n ,  z)]8,- [x cos ( n ,  y) -y  cos (n ,  x)]& for w=O, then the equilibrium 
figure is stable, where Ox,  e,, 8, are independent of x, y, z. 

Let the radius of a sphere be R ;  then 

takes the form 

Let x= Rsin 8cos JI, y = R  sin 8sin JI, R = R  cos 8 ,  and 

Then equation 21 gives Yo(8, JI) = 0 ,  Y 1  (8 ,  JI) = 0 ,  and we have 

(Sn)2da= 2 I (Ym)2dcr. 
m=o s 

Furthermore by the relation 

we obtain 
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Hence 

This expression cannot be negative and cannot become zero unless all 6n are zero simulta- 
neously. Therefore, a sphere is a stable equilibrium figure. 

lsoperimetric Problem of a Sphere 

Given a closed curve in space, construct the surface of minimum area enclosed by the 
curve. This is Plateau’s problem, one of the isoperimetric problems concerning a sphere 
(Blaschke, 1916,1921; Bonnesen, 1929; Tonelli, 1923; Minkowski, 1953; Lichtenstein, 1929). 
A more general problem is to find the configuration of the maximum of a certain volume 
integral when the surface area of the configuration is fixed. A closed convex surface which 
is regular analytic and is of positive curvature everywhere is called an ovaloid, the only surface 
of fixed mean curvature. If we deform an ovaloid continuously and isometrically (lungentreu), 
then it displaces as a rigid body (Starrheit by Weyl and Blaschke). 

Theorem: Among all ciosed surfaces of given volume, a sphere has the minimum surface 
area. 

For proof, we employ the symmetrization method of Steiner. Suppose that the ovaloidK 
consists of vertical columns parallel to the z-axis. Displace each column parallel to itself SO 

that the center of mass is on the plane z=  0. Then K becomes an ovaloid K* of the same 
volume symmetric with respect to z=  0. In order to prove that K* is an ovaloid, it is sufficient 
to prove that the straight line joining two points PIY., Q1* of K* is inside K*. Let P?, Qz* be 
the mirror images of PI*, QI* with respect to z=O, and the points of K corresponding to 
PI*, Q?, P2 ,  Qz* of K* be PI, Q1, Pz , Qz . Then, since K is an ovaloid, the convex quadrangle 
PlQlPzQ2 is inside K. As Pp,  Q1*, Pz*, Q? are obtained by symmetrization from P I ,  Qi , Pz ,  Q z ,  
the quadrangle Pl*Q1*P?Q? is inside K *. Hence PTQ? is inside K *. 

Letf(x, y) , (2 0) , be the length of the vertical column passing through the point (x, y, 0). 
The volume is T =  JJf(xy)&dy; functionf(xy) is the same for K and K*. Hence the volume 
is conserved. That the surface K* is regular and analytic can be seen easily, and the proof 
that K *  is of smaller surface area is seen in the following manner: 

Divide the surface S of the ovaloid into two parts 3 and S by the closed curve on the 
vertical tangent planes and denote them by the Gaussian parameters u and v. 

z(u, v )=g(u ,  v )=x(u ,  v), jqu, v)=y(u,  v ) = y ( u ,  v ) .  
Let 

l + t  - 1 - t  
z(u, v ;  t )  = z z ( u ,  v) --2-g(u, v), 
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@ denotes the area of surface S. It is sufficient to prove that @(+ 1) - 2@(0) + @(- 1) 3 0. 
We see that 

and for - 1 < t < + 1 we have @ “ ( t )  3 0. Hence the area @ ( t )  is decreased by the sym- 
etrization. Consequently a sphere has the minimum surface area among all ovaloids of 
given volume. 

The rigorous existence-proof of such a limiting ovaloid, a sphere, with 

where X denotes the sphere, was completed by Gross in 1917. Blaschke proved the existence 
of the limiting figure by referring to the Bolzano-Weierstrass theorem. We can choose from an 
infinite sequence of uniformly bounded convex bodies a subsequence of convex bodies K1, 

Kz,  . . . converging to a convex body L ,  such that 

L =  lim K,. 
n + m  

Here “uniformly bounded”, means that the body is contained in a hexahedron or a sphere. 
Blaschke proved the following therorems (1918). Let B be an ovaloid, F its surface area, 

and E the mean of the distances of any two points P ,  Q in the domain. Then 

A circle has a minimum E for a given F. Between the integral invariants E and F of B ,  we have 

E 3 E*,  where E* is a figure obtained from E by symmetrization. The solution, if it exists, 
should be a cricle. 

Let I f (rpQ)dFpdF Q ,  f’(r) < 0; 
B B  

J has a maximum value for a circle. Forf(r) = l/r, we have Liapounov’s theorem. 

Carleman’s Theorem (Carleman, 191 9)  

(1) Iff(r)  > 0 is decreasing, then J has a maximum value for a circle. 
(2) If f ( r )  > 0 is decreasing and if @ ( P )  = J B ~ ( ~ P Q ) ~ F Q  has a constant value on the 

boundary of domain B ,  or, if the area of domain B is kept constant, then domain B is a circle 
for S J = O .  

Lichtenstein (1919) extended the theorem to three dimensions, and also to nonhomo- 
geneous bodies. Consider a body Bo consisting of a finite number of pieces bounded by 
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analytic surfaces. Any mass may have a point or line in common with another mass. The mass 
distribution is supposed to be such that the densityp varies continuously between its minimum 
p r  and its maximum prr. Let B ,  be the total mass in BO such that its density 3 p. Mass B ,  may 
consist of a finite number of pieces, but is bounded by analytic regular surfaces. For p=p”, 
the total mass B ,  reduces to a finite number of analytic surfaces, or a line, or a point. Denote 
the volume of B,  by V ( p ) ;  then V(p1) > V(p2) for PI < pz. Furthermore V(p”) = 0; also, 
V ( p )  decreases monotonously and continuously with p ,  but may be stepwise discontinuous. 
Lichtenstein proved that the energy is a minimum for a distribution of B ,  in the form of 
concentric spheres among the distributions with a given value of V(p) of mass Bo. 

A more rigorous mathematical proof was given by Gross (1917) after the method of solv- 
ing the isoperimetric problem of a sphere by Tonelli (1915) and by Rosenblatt (1920) using 
Fubini’; theorem on the‘integral of the measure of a set of points. 
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CHAPTER II 

E I I i psoida I Figures of Equ i I i bri u m 

POTENTIAL OF AN ELLIPSOID 

A point on the surface of an ellipsoid is represented by 

x2 y2 2 2  -+-+-- 1=0. 
a2 b2 c2 

For a point P outside the space bounded by this ellipsoid we have 

x2 y2 22 - + - + - - l > O .  
a2 b2 c2 

Consider 
2 2  1=0. +-+-- X2 r” 

a2+u  b2+u c2+u 

The left-hand side is positive for u = 0, decreases continuously as u increases, and becomes 
- 1 for u = 00. Hence it has one and only one positive root. Denote the root by u; the outside 
potential of the ellipsoid at a point u(x, y, z )  determined by the root u with givenx, y, z, is 

where 
q ( A )  = (a2 + A) (b2 + A) (c2+ A ) .  

The inside potential is 

X2 Y2 - 
vi=?rabcp.fo~ ( a2+A b2+A c2+A 

The root u is zero on the surface, and the two functions Ve and Vi coincide on the surface. 
V ,  and Vi have both properties of potentials because Ve becomes zero of order l / R  at infinity, 

35 
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and its first derivative is continuous and satisfies AV=-447~p for the whole space, where p is 
supposed to be zero outside the ellipsoid. 

Let 

Then 

potential Vi is a maximum at the center, and its value is TabcpK.  The equipotential surface 
is K - A x 2 - B y 2 - C z 2 = h ,  or A x 2 + B y 2 + C z 2 = K - h  and is homothetic and concentric 
as h varies. It can be shown that the potential is a maximum at the end of the minor axis and 
a minimum at the end of the major axis. 

The energy of the total mass is 

( I  J I I )  K d r - A  x 2 d r - B  y 2 d r - C  z2dr  

In the case of an oblate (planetary) spheriod, we obtain 

1 
abc A = B = -  [(52+1)[ cot-’ 5 - 5 2 ] ,  

1 
abc C=-2(52+1)(1-5 cot-’ t), 

If we denote the eccentricity of the meridian section by e, then 

e2=1--=- c2 1 
a2 52+ 1” 

1 -e2 sin-’ e - - vi=7 a b c A = a b c B = -  e3 e2 ’ 

(Somigliana, Morea, Heine, Tedone). 
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Theorem: A polynomial of the second degree 

which is positive in a region T,  represents a Newtonian potential for the inside of one and 
only one homogeneous ellipsoid in that region (Dive, 1931a, 1931b). 

Ivory’s lemma: Take two homofocal ellipsoids E and El: 

with 
a,2 - a 2  = b,2 - b2 = c,2 - ~ 2 .  

Consider a point A (x, y ,  z )  of E and a point A1 (x, y ,  z )  of El ,  such that 

a1 bi c1 x1=--x, y 1 = z y ,  z1=-z, a & 

and another pair of such points B(x‘, y ‘ ,  z ‘ )  andBl(x;, y ; , z ; ) ;  then we haveABl=AlB. Such 
a pair of points is said to be corresponding. 

Ivory’s theorem: Let P and P1 be two corresponding points on two homogeneous confocal 
ellipsoids E(abc)  and El(alblc1). The x-component of the attraction due to E at P and the 
x-component of the attraction due to E1 at PI are in the ratio (bc)/(blcl). 

Chasle’s corollary: Take two confocal h_omogeneous ellipsoids of equal mass. The 
potential at a point of the first ellipsoid due to the second ellipsoid is equal to the potential 
at the corresponding point of the second ellipsoid due to the first ellipsoid. 

Maclaurin’s corollary: The attraction at an external point of a homogeneous ellipsoid 
is in the same direction as the attraction due to the homofocal ellipsoid passing through that 
point, and their strengths are in the ratio of the masses of the two ellipsoids. 

Newton’s corollary: The homogeneous shell contained between two homothetic con- 
centric ellipsoids does not affect any attractive force at an inside point in the cavity, or, 
in other words, the volume potential of a homogeneous ellipsoidal shell is constant inside 
the cavity. 

The converse is also true. In order that the potential in the cavity be constant, the two 
homothetic surfaces should be ellipsoids (Dive, 1931b, 1932a, 1932b). 

Duhamel’s corollary: A spherical shell contained between two concentric homogeneous 
spheres does not affect any attractive force at any point inside the cavity. This is the basis 
of the famous experiment of Cavendish on electricity. Cavendish took an electrometer into 
a highly charged, spherical cavity but could find no change of electric force inside. 

Conversely, Robin’s problem is to find the distribution of electricity on the given surface S 
for which the interior potential is constant (Gunther, 1934). 

Poisson’s theorem: The attraction at an external point due to a homogeneous homothetic 
ellipsoidal shell is directed toward the internal axis of the cone with the point as the vertex 
and in contact externally with the homogeneous ellipsoid (Gray, 1913). 

The proof of these classical theorems are in the books by Tisserand (1891), Thomson and 
Tait (1883), Pizzetti (1913), or Poincar6 (1899). 
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Stokes' theorem: Given the surface S of a mass in equilibrium and its mass M and its 
angular velocity w, we can determine the external potential V. In fact 

0 2  

2 AVe-0, Vi+-  (x2+y2)  =constant 

on the given surface S, and lim rV= M .  The function U= V +  ( 0 2 / 2 )  (x2+y2) is determined 
by Dirichlet's problem. 

Corollary: We can also determine the principal moments of inertia together with the 
directions. From this theorem, it follows that the mass distribution inside the earth cannot be 
determined by the gravity measurement on the earth's surface alone or by the perturbation 
on other planets alone. Even when the rotation velocity w depends only on the distance from 
the rotation axis, we can determine the external potential V merely from S, M ,  and w (Dive, 
1928; Wavre, 1927,193233). 

Clairaut's theorem: The difference between the relative decrement of gravity from pole 
to equator and the ellipticity is 512 times the ratio of the centrifugal force and gravity at 
the equator; that is, 

Z-=2 

&I&--=--, a-b  5 w 2 a  

ge a 2 ge 

MACLAURIN SPHEROID (MACLAURIN, 1742; LAPLACE, 1776; LEGENDRE, 1789) 

P u t a = b , a > b > c ; t h e n  

Put 

then 

d d V = X d x + Y d y + Z d z = - j  [ P ( x 2 + y 2 )  + R z 2 ] ,  (28) 

and the condition of relative equilibrium is 

The surface of equal pressure is given by 

( P  - w2) ( x 2  + y2) + Rz2 = constant, (29) 

which is a rotation figure around 02. We determine C so that the free surface coincides with 
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This gives the relation beyween C and o. 

pressions, we see that the left-hand member becomes 
At first we see that c < a. In fact, a2P - c2R= azo2, or, substituting the foregoing ex- 

Next we write a2e2= a2-c2, or ae/c=f .  We obtain from equation 30 

wherc P and R depend on the ratio of the two axes. Put A = & ,  then 

dt 
l-0 +p+ t )  m , P = 2 r p ( l  +fL) 

or, after computation, 

hence 

Furthermore 

M = -  4 ra2cp=- 4 rpc3( l+ fL )= -  4 r p  ~ a3 
3 3 3 V i T p .  

the function h has a maximum at f=fo=2.53 . . . ; and 

If o2/ (271-p) < 0.224, we obtain two Maclaurin spheroids; if 02/ (2rp)=0.224, we obtain only 
one Maclaurin spheroid, and if os/ (2 rp )  > 0.224, there is no Maclaurin spheroid. There is no 
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natural celestial body for f > 2.53 When o+ 0 or h+ 0, then one of the roots tends to zero, 
that is, the figure tends to a sphere. Iff is large, then e is small and a is large, and the figure 
tends to a flat circular disc of large radius: 

I 

3M 
a3=- m. c 3 = - -  3M 1 

4n.p 1 + f 2 '  47rP 

JACOB1 ELLIPSOID (JACOBI, 1834; LIOUVILLE, 1834; SMITH, 1838; PLANA, 1853; DARWIN, 1887) 

Let 

where 

etc.; dh lo" ( a z + A )  m' P = 2aabcp (33) 

then the condition for equilibrium is 

(34) _ _ _ _  '- [ ( P - w 2 ) x 2 +  ( Q - w 2 ) y 2 + R z 2 ]  +constant. 
P 2  

The surface 
( P  - w 2 ) x 2  + ( Q  - w2)  y 2  + Rz2 = constant (35) 

is homothetic and concentric of the second degree. In order that this surface should coincide 
with the free surface of the ellipsoid x2/a2 + y 2 / b 2 + z 2 / c 2 =  1, we should have 

whence we obtain the conditions 

- a2P - b2Q 
u2+ b2 w -  

a2b2(P - Q )  + c z ( u 2 -  b2)  R = O .  and 

From equation 37 we obtain 
w2 XdX 

( a 2 + h ) ( b 2 + h ) m '  
-=abc  Iom 
2TP 

C 2  
Put 

A = c 2 K ,  s, -_. b 2 - t ;  
a2 

then the conditions are 

and 

(37) 

(38) 

Also we obtain 
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4 c3 rrabcp =- rrp - 4 M = -  
3 3 6' 

It should be noticed that s + t < 1, and hence s < 1, t < 1, and accordingly c2 < a2, c2 < b2, 
and cis the shortest axis. 

Now we determine s and t with a given value of w, or conversely determine w with 
given values of s and t (Tisserand, 1891). 

Let h= w2/2rrp as before; then 

h=p(s ,  t) "St - f; (1 + S K )  (1 + tK)A' 

0 339 

0.135 
A3 

It can be shown (Appell, 1921b) that 
u 
0.135 0.33 

(1) s, t > 0; 
(2) y(s,  t )  is symmetric with respect to s and t; 
(3) s = O a t t = l ;  F, 

(4) t decreases with increasing s; 

(5) for a given value of 0 < s < 1, there is only one 
value of 0 < t < 1; 

(6) C is at s=t=to=0.3396, and the value of h 
at E is ho=0.1871. 

The condition for the existence of a Jacobi ellipsoid 
is ~~(277-p) < 0.1871. We obtain two Jacobi ellipsoids 
for h < ho= 0.187, but the two are identical. For 
h= 0.187 we obtain only one ellipsoid with a= b. The 
Jacobi ellipsoid turns into a Maclaurin spheroid at E. 
This is the bifurcation point of the two series of 
equilibrium figures. There is no Jacobi ellipsoid for 
h > 0.187. For o+ 0, the major axis increases in- 
definitely, and the middle and the minor axes tend to 
zero but their ratio to 1; that is, the figure is infinitely 
long and needle-like with a circular section. Thus we 
obtain three figures - a sphere, an infinitely thin cir- 
cular disc, and an infinitely long needle. The theory of 
linear series has been discussed by PoincarC (1885a, 
1885b) with the idea of the exchange of stability at the 
bifurcation point. A Maclaurin spheroid is stable in 
the linear series S to E but is no longer stable in the linear series E to 0. On the other hand a 
Jacobi ellipsoid in the linear series E to A and E to B is stable. The stability character is 
exchanged at point E. 

h 

t 

h 

8 

t 

COSMOGONICAL PROBLEM 

From a cosmogonical point of view, we should take p= Jo as the parameter. A nebula 
with a vanishingly small w may develop w by shrinking (Laplace, Liouville). For a Maclaurin 
spheroid, 

315-031 0 - I1 - 4 
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h - 0 2 -  P2 _. 25P2 2 J = - Mazy 
5 2 ~ p  2rpJ2 4M2a42rp’ 

50p2 4 r p  lI3- (3 +f“) tan-lf- 
--(-) 3M3 3M -4(l+f2)2/3[ f 3  

Put k= ( p c f )  E 4h( 1 + f 2 ) 2 / 3 ,  which is supposedly given. For a Jacobi ellipsoid, 

t 
I 

k is a function of p and p. If p = constant, then k shows the variation of p; if p= constant, 
k shows the variation of p. The conclusion is that there exist one or two ellipsoidal figures 
of equilibrium for any given value of p. VBronnet (1919a, 1919b) varied a instead of p in his 
work. 

For a Maclaurin spheroid, we have 

50 p2 [ (3+f2).tan-1f-3fl 
f 3  

; g ~ - - - - - - = 4 h , ~ = 4 V ~  3M3 a 
( 3 1 / 3 =  (l+f2)>”6 

a 

For a Jacobi ellipsoid 

I 

50 p2 s1/3 -k-=-- ( s+t )2  h 
g=jj@a- t1/6 st vi-’ 

He obtained the figures 
S 

go= 1.28, to=so=0.340; 

For cosmogonical applications see Appell (1922); VBron- 
net (1926a, 1926b, 1933); Jeffreys (1952); Poincarb (1913); 
Chamberlain and Moulton (1909); Narliker (1934); Nolke 
(1930, 1932); Filon (1932). These discussions are on statical 
grounds, and should be dynamical (Jeans, 1917, 1919). 

In the last few years several books on heterogeneous 
equilibrium figures have appeared, intended for appli- 

k 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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cation to planetary and double-star problems, e.g., Wavre (1932a), Kopal (1960), Jardetzky 
(1958), and Meffroy (1962). The most interesting feature is the difference of the surface of 
equal pressure-isobaric surface- and the surface of equal density-isoteric surface-, 
the idea initiated by Bjerknes in meterology and worked out by Wavre (1932a) in stellar' 
applications. Recently Chandrasekhar (1962) based his discussion on his theory of super- 
potentials and on the virial theorem. 

HOMOGRAPHIC MOTION _ _  

Consider a nonrigid body motion of a homogeneous, fluid mass and keep its ellipsoidal 
figure of equilibrium unchanged; that is, allow internal motion of fluid mass by fixing the 
external shape of the figure. Such a motion is called homographic. In other words, the ex- 
ternal shape is an ellipsoid rotating around its own axis, but the motion of the fluid is rotational 
with a different angular velocity to that of the external shape. At first, solidify the fluid in the 
form of an ellipsoid and fit the fluid inside a vessel of the same form and size, and let it rotate. 
Then melt the fluid and let the vessel have an additional angular velocity. Finally, remove the 
vessel (Pizzetti, 1913; Basset, 1888; Greenhill; 1882; Lamb, 1959). 

A molecule of the fluid which was at a point (6, q, 5) at t = O  referred to the fixed axes in 
space is supposed at t= t ,  to be at 

x = 8 6  + mq + n5, 
y= /"[+m'q + n ' t ,  
z = ey + m"q + n"5, 

where the direction cosines 8, m, n, e ' m ' n ' ,  errmrrnrr are functions oft. 
The Lagrangian equations of motion are 

where 

Differentiating these equations with respect to 6, q, 5 gives 

and 
etc., 

We obtain three integrals from the latter equations: 

dn dm dn' dm' dn" dm" m--n -+m' ---' -+m"--n'f -- - constant. dt dt dt dt dt dt 
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Assuming that the axis of the principal moment of inertia coincides with the coordinate axis 
at t=  0, we obtain three integrals of area 

d n  ' n' &)=constant, etc., 
d t  +z ( n  -&-- 

and one integral of energy: 

x [ (g)2] 4- Y [ ($)2] 4-2 [ (f )'I - p  1 v d ~ =  constant. 

Let the equilibrium figure be 

and 

[=Ax+ h'y+ A'%, 
q = px + p r y  + p'k, 

5=vx+v'y+v"z.  

The free surface at t is also an ellipsoid 

(Ax + h'y + h"z) + ( px + p ' y + p"z) + (vx + v'y + d'z) 
= 1, 

ao' bo' co' 

and the potential is 

where the coefficients are functions of t .  Substituting this in the Lagrangian equations, 
we see that dp/a[ ,  aplaq, aplat are linear homogeneous functions of 8, r ) ,  5, and p is of a 
similar form to V as a function of 5, r ) ,  5, and t .  But p should be a constant on the ellipsoidal 
surface; hence 

where u, are functions of t only. Inserting this in the equations for 

and after some computation, we obtain nine equations of the form 
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V" 

d t 2  ag az CO 

-- d 2ns -2- (E) + 2a,. . . ., *, . .  

With AV=-4vp, we obtain from 

This equation expresses the surface pressure as a function of the position at t. For a uniform 
rotation, this equation reduces to 

and 

where g is the mean surface gravity. 

RIEMANN'S PROBLEM (1 861) 

Suppose that the external axes of the ellipsoid are invariable, but the direction of the 
axes is variable. Denote the coordinates that coincide with the axes a, b,  c of the ellipsoid by 
x', y', z r .  Then with reference to the coordinate axes fixed in space, 

Thus the general motion of molecules is decomposed into rigid and homographic motion. 
The latter is an internal motion. The external shape is represented by 

From 

x r 2  y12 $2 

-+-+-=l. 
a2 b2 c2 
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etc., 
d2x aV 1 ap -=---- 
dt2 ax p ax' 

we derive 
d2x d 2 y  d2z aV 1 ap 

o l 1  - + P I  -+ yl  --=I- -7, etc. dt dt2 dt2 ax pax 

The left-hand side is the projection of the acceleration of a molecule on the x'-axis. This is 
composed of three components: 

(1) The component of the relative acceleration d2x'/dt2, or 

d2L d2M d2N 
tz+r) p+ c,,; 

(2) The component of the acceleration due to deformation 

and 

(3) The composite centrifugal acceleration 

2 Q - - R ~ ) ,  dz ' ( dt dt 

where P ,  Q, R are the angular velocities of (x', y ' ,  z ' )  along the axes x', y ' ,  Z' referred to the 
fixed axes; that is, 

Since the axes of the ellipsoid are supposed to remain invariable, being of the form 

with constant K ,  A ,  B,  C ,  we see that 

can be written 

av ax' = - 2Ax' =- 2A(LQ+ Mr) + N c )  ; 

Put 



ri d a i?. L 6? %? 
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Suppose that the external surface rotates with angular velocity w around its figure-axis. 
Let it be the c-axis; then P = Q = 0,  R f  0 ,  All =AB = - 3, A12 = - dR/dt, A21 = dR/dt, 
and other A ,  are zero. We obtain 

---.“ 

These equations are satisfied in three cases: 

Suppose at first that u f b. We obtain at first dxldt = 0, dRldt = 0 for any of the three cases; 
and ’ 

U 
x r = c  cos Xt+- r)  sin X t ,  x = x r  cos Rt-  y’ sin Rt ,  b 

b 
a Y‘=---( sin Xt+q cos X t ,  y=x‘ sin Rt+y’ cos Rt ,  

The axes ( x r  y r  z r )  rotate uniformly around the z-axis. 
Let 

c2 - C2 

a 2 - s 9  E= t; 
- 

then the condition becomes 

where 

Equation x = 0 gives Jacobi’s rigid motion; equation R = 0 gives Dirichlet’s internal harmonic 
motion (1860), and the external shape is fixed (Dedekind’s ellipsoid, 1860). 

The condition for R f 0, x # 0 can be transformed into 
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(x2 + 0 2 ) 2  - 402x2 = - st ( P s - Q z t ) ,  
t-s 

where 

and 

Q=2rp ( l - t )  [ K(lGSK) dK>O. 

The condition is satisfied if 

P f i  > QV7, or G-s3/2 > VT--t3/2; 

that is, s, t should be contained in the interval between 1/3 and t. 
Next suppose that a= 6 .  We have Q = R= 0 ,  P # 0 ,  a= b # c ,  and += x= 0 ,  P =  const., 

and (a= const. A uniform rigid rotation occurs around the a-axis, and a homographic deforma- 
tion occurs on the plane perpendicular to this axis. Contrary to the case a # 6 ,  the rigid-body 
rotation and the harmonic motion have a common axis which is one of the equatorial diameter. 

Stekloff (1905, 1906, 1908, 1909) classified two cases a > c ,  a= b and a < c ,  a= b. The 
first one is Dirichlet’s case. In the second case, there are three solutions; one is Dirichlet’s 
and the other two are new. Denote by E’ the positive root of 

I 

E + L 2  15~’-3~--4 . log -- E-1 1 5 ~ ~ - 3 e ~ - 9 ~ + 1  

There is only one positive root in the interval (1, 5/3). If 02/r > T(E’), where 

*(E) =E(E+l)(EZ-l) - log -- 3 ) ,  rei: E - 1  

then the solution is possible for d/r > T(E’).ff w 2 / r  < *(E’), then there is one solution for 
0 < w 2 / r  < 4/15 and two solutions for 4/15 < w 2 / r  < *(E’).  Thus it is possible to have three 
solutions. 

OSCILLATION OF AN ELLIPSOID 

The stability character may be discussed b y  imposing small oscillations on the equilib- 
rium figure, and studying the subsequent motion. It is the method of judging the stability 
by the characteristic exponents of Poincar6. An equilibrium figure is stable if the varied mo- 
tion is a periodic oscillation around the equilibrium figure. 

Appell(1920,1921a) and Cartan (1922) considered small oscillations about the equilibrium 
state of a rotating fluid mass in general: 

ax ’ 
aU --22wv = at 
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We obtain from these equations a partial differential equation 

49 

Putting ax= eixt& etc., +=eiht+*, u=dSx/dt,  etc., we obtain 

PoincarC: (1896, 1903, 1910a, 1910b) discussed the tidal motion over the oceans on the 
basis of the theory of integral equations (see Appendix A; see also Bertrand, 1923). Bryan 
(1890) and especially Hough (1897) considered the tidal theory on the basis of harmonic analy- 
sis. Proudman (1913, 1914, 1916, 1924, 1928, 1932, 1933) discussed the tidal theory on the 
basis of the theory of quadratic forms of an infinite number of variables by going back from 
Fredholm’s theory of integral equations as in PoincarB’s discussion to Hilbert’s theory of 
integral equations. Goldsbrough (1928, 1929,1930,1931,1933) discussed the tidal oscillations 
as the periodic solutions of differential equations. 

A complete discussion of ellipsoid-type oscillations of a Maclaurin spheroid has been 
published by Hargreaves (1914). Such oscillations (Riemann, 1860) were shown to have a 
period just one-half the rotation period at the bifurcation point of the Jacobi ellipsoid series 
and the Maclaurin spheroid series. The oscillations of a spheroid are divided into polar and 
equatorial. In a polar oscillation, the equator is always circular, but the equatorial radius 
and polar radius are subject to periodic change. In an equatorial oscillation, the polar axis 
is invariable, but the equator is subject to periodic elliptic deformation. The mode of oscilla- 
tions in the beginning of the Jacobi linear series is not much different from that of a spheroid 
near the bifurcation point. As we proceed farther from the spheroid, the distinction between 
polar and equatorial becomes unsuitable. If the word polar is applied to the long axis, and 
the word equator to the nearly circular ellipse containing the short axis, then the oscillation 
may be classified as polar and equatorial. In the beginning of the Jacobi linear series, the 
equatorial oscillation has just one-half the period of rotation, and the polar oscillation has a 
shorter period. As the ellipsoid becomes slightly elongated, the two periods gradually diverge; 
the first period increases, and the second decreases. In the limit of extreme elongation, the 
first period becomes equal to the rotation period, and the second tends to a value as the 
rotation period tends to infinity. The two frequencies ne and np are finite for small oblateness, 
and ne, which is the geater  at first, decreases rapidly with increasing oblateness and ne=np 
for c/a=0.5892 when n2/w2=4.166 . . . . The bifurcation occurs at c/a=0.5827, ne=2@, 
ng/02=4.1182; nP=2w is reached for c/a=0.5612. 

The amplitude ratios da:db:dc of the oscillation of frequency n are determined by 
(Riemann, 1861) 

da db [ a2Eaa - n2 ( a2 + c2) ] - + ( abEaa - n2c2) -= 0 
U b ’  

db da 
b a [bzE*a- n2( b2+ cz)] -+ ( a b E d -  n2c2) -= 0; abc= constant. 
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The frequency n2 is given by the quadratic equation for n2 by eliminating the ratio daldb from 
these equations; the total energy is expressed by mEI5, and Ea,, etc., are the second deriva- 
tives of E with regard to a and b, respectively. 
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CHAPTER 111 

Lam6 Functions 

LINEAR DIFFERENTIAL EQUATIONS 

Consider the differential equation 

d2u du 
-+p(z)  -+q(z)u=O, dz2 dz 

where p(z), q(t) are analytic but with a finite number of poles. A point at which p(z), q(z) are 
both analytic is called ordinary; otherwise it is singular. If, although p(z) or q(z) or both 
may have poles at z=c, (2-c)p(z) and ( t - c )2q (z )  are analytic at z=c, then such a point 
z=c is called regular; otherwise the point is called irregular. This condition is not only 
necessary but sufficient (Ince, 1927). 

Write 

and 

d2u du 
dz2 dz ( Z  - C) -+ ( Z  -- c ) P  ( Z  - C) -+ Q (t - C) u = 0, 

P ( z - c )  =po+p1(z-c) +pz(z-c)2+ . . ., 

Q(Z-C)=qo+ ~ ~ ( Z - C ) + ~ ~ ( Z - C C ) ~ +  . . ., 

and try the solution 

We obtain 

a2+ (p0- -1)a+q0=0,  

~ l r ~ a + 1 ) ~ + ( p o - 1 ) ( a + 1 ) + q o ] + a p l + q ~ = 0 ,  . . . . 
The equation F ( a )  = a2 + (PO - 1)a + qo = 0 is called the indicia1 equation. The other co- 
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efficients al, az, . . . are determined successively after we determine the roots a = p l ,  pz  by 
this equation. 

If the roots are p and p+n(n=O,  1, 2 . . .), then this formula for WI(Z), WZ(Z) fails,, 
and w2 (2) is written 

with arbitrary constants A, B. The coefficients h, are determined by a process similar to 
the above. The behavior at infinity can be examined by putting z= 1/21. The point z=w is 
regular or irregular accordingly as z1= 0 is regular or irregular. If z p ( z ) ,  224(2) are analytic, 
then z = is regular. 

A linear differential equation with only regular singularities in the whole domain includ-. 
ing z = a  is said to be Fuchsian. When two singularities coincide, we call it a confluence. 
Suppose that al, a2, a3, a 4 , ~  are the only regular singular points and other points are ordinary. 
Let the exponents be a r ,  &(r= 1,2 ,3 ,  and 4), and the exponents at 03 be p1, pz. The equation 
is of the form 

Azz + 2Bz + C l  

t' r=l J 

where A is such that p1, pz are the roots of 

and B, C are constants. Klein (1894) and B6cher (1894) have shown that linear differential 
equations in mathematical physics can be expressed in a form such that the difference of 
the two exponents is equal to 1/2 (elementary singularity). If two regular singularities codesce, 
we have a regular singularity with arbitrary exponents. If three or more than three regular 
singularities coalesce, we have an irregular singularity. A linear differential equation with 
rational coefficients has a definite number of regular singularities and a definite number of 
irregular singularities. Thus with &-=ar+1/2 ( r = l ,  2, 3, 4) we have 

For z= 00 to be an elementary singularity, we should have 
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Thus two constants B and C are arbitrary. By a further transformation 

we can reduce the equation to 

v=o, 

r = l  

with A=3/16. This is the generalized Lame equation. The most general type is 

This is called the Lamd-Klein equation, which is the basis of the theory of cyclids (Bkher, 
1894). Thus a linear differential equation is specified by the singular points and their ex- 
ponents. According to Riemann, the generalized LamC equation is written 

and specified by three elementary singularities and one nonelementary singularity without 
any essential singularity. 

Put a4+ 0, lim C/ar=h/4,  lim 2B/U4=n(n+ 1) /4  in the generalized Lami equation; 
this gives the Lame' equation 

The irreducible constants are (a3 + a2)/ (a3 - a l )  , h, and n. Put a2 + a3 -+ 1, al + 0; then 
we have the associated Legendre equation 

n(n+ 1 )  -- w=o. 1 - 9  m2 1 
Put ai+O, a2-1, a 3 + a 4 + ~ ~  and let lim [ C / ( U ~ U ~ ) ] = U / ~ ,  lirn [2B/(a3a4)]=k2/4; then 
we get the Mathieu equation 

or 

a+ k2z w=o, d2w 
. .  .. . .. 

d2 w -+ ( a + k 2  cos2 x)w=O,  d.x2 z=cos2 x .  
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Put a1 + a2 + 0, a3 + a4 + 00, and let Em C/ ( a3a4) = n2/4, lim 2B/ ( a3a4) = k2/4; then we get 
the Bessel equation 

d2w 1 dw z-n2 -+--+- w=o, 
dz2 z dz 4z2 

or 

Consider 

ELLIPTIC COORDINATES 

c < b < a ,  X2-a2<X2-b2<h2-c2. 

The surfaces obtained by varying h are confocal. We obtain three surfaces corresponding 
to the three roots A2 : c < v < b < p < a < p. For p > a ,  it is an ellipsoid; for b < p < a ,  a 
hyperboloid of one sheet; for c < v < b,  a hyperboloid of two sheets; p ,  p, v are called the 
elliptic coordinates of a point in space. For a given set p,  p, v, there are eight points located 
symmetrically with regard to the three coordinate planes; for a given set of x, y, z ,  there is 
only one set p ,  p, v. We have identically 

(p2 - h2)  ( p2 - h2) ( v2 - 1') 
(A2 - a') ( h2 - b2)  ( A 2 -  c2) * 

22 1= +-+-- X 2  Y2 
h2-a2 h2-62 h 2 - ~ 2  

Multiply both sides by X 2  - a2 and put h2 = a2; then we have 

( p 2  - a2)  (p2 - a2)  (v2 - a2)  . 
( a 2 -  b2)  ( a2 - c2)  ' x 2  =; 

similarly 
(p2-b2)  (p2 -b2)  ( v 2 - b 2 )  

( b2 -a2)  ( b2- c2)  
y2 = ' 

(p2-c2) (p~--c2) (v2-c2)  . 
z2 = 

(c2 - a') (c2 - b2) 

The elliptic coordinates p,  p, v are orthogonal: 

ds2 = dx2 + dy2 + dz2 = a2dp2 + P2dp2 + y2dv2, 
Q Q 

P = G '  y= 

(43) 

(44) 
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(p2-u2) (p"-b*) (p2-c2) 
P2 

A2 = 

(45) 

C -  2 -  (v2-u2) ( z j * - b 2 )  (v"c2) 
v2 

Here A 2  > 0, B2 > 0, C2 < 0. Hence A ,  C are real, and B pure imaginary. Thus the 
Laplace equation takes the form 

or 

Put 

then 

dv 
-= dw; C 

dP- -- dv, B 
- dp = du, A (47) 

Now write 

with invariants g2 and g3. Assume that s = co; that is, pz=  co is a pole of order 2 at z= 0: 

pz=-+C1z'+. 1 . .; 
2 2  

p z has two periods 2 0  and 2w', and the three roots are real: 

1 4s3 -gzs -p3 4(s - el) (s - ez) (s - e3), 

el+ez+e3=0, e3 <e2 < el. 

Supl)ose that p z  < 0; then w is real, and w'  is imacinary: wlb,;l z=O . . . w : s = p z = + c o .  . . el 

z = w  . .  . w+w':  p z = e l .  . . e2 

z = w + w '  . . . w': p z = e z .  . . e3 

z = w ' .  . . 0 : p z = e 3 . .  . - -co .  0 u w x 
-a - 

315-031 0 - 71 - 5 
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As z describes a path 0 + w + w + w’ + w’ + 0, the variable z always decreases; 

(51) di 
-= p ‘z= ~ ‘ 4 ~ 3 -  gzs -e3 = zV‘( p z - el)  ( p z - ez) ( p z -  ea); 
dz 

Put 

p1, pz, p3 are doubly periodic but the periods are different: 

2 0  20’ ‘ [ Ieriod 
p z  + + 2w 2w‘ 

put p2==s+h, &2-h=e2, cz-h=e3, h= ( 1 / 3 ) ( a 2 + b 2 + c 2 ) ;  thenwe have 

= du; 
ds 

21/(s-e1) (s-e,) (s-e3) (55) 

u vanes on the real axis from 0 to w, and s varies from +a, to u2-h=e1. Similarly, put 
p 2 = p v +  h, and let v vary from w to w +  w’  so that p2 is real. Put u2= pw+ h and let w vary 
from w + 0’ to 0’. We have 

n2 = (pu-el)(pv--el) (pw-eel) 
(el - ez> (el - e31 

or, with 

h d 
V‘E=aro a ( z )  ’ - dz2 log a ( z )  =- dz [ ( z )  =-p(z),  

w1= 0, w2=o‘, 0 3 = - w - 0 ’ ,  q T = [ ( w r ) ,  (r= 1 , 2 , 3 ) ,  
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we have 

and 

where 

The Laplace equation now takes the form 

(pv-pw) y+ d’V (pw-pu) -+ d‘V (pu-pv) -=o. d‘V 
dU dV* a w2 

59 

(57) 

ELLIPSOIDAL HARMONICS 

We now express p, p, Y defined by equation 43 in the form of polynomials of x, y, z. 
Consider a polynomial Qn(X, y, z )  of degree n and replace x, y, z by their expressions (equa- 
tion 43) in terms of p ,  p, u. Quantity Q n  is symmetric with regard to p, p, u since it is sym- 
metric with regard to x, y, z. If we consider t/pi--a” as of degree 1 with regard to p, then 
Q n  is of degree n with regard to p. We distinguish four classes: 

1st class: 

Qn=P(X2 ,  y‘, z * ) ,  n=2k. 

Q ( n 2 ,  y’, z’)=@(p2, p 2 ,  v”). 

This is of degree 2k with regard to p ,  p, u. 

2nd class: 

Q n = - x P ( . X ’ ,  y’, z ’ ) ,  

xP(x2 ,  y* ,  z’)  = C V p T F  

n=2k+ 1. 

’u’ - a* cp(p 
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3rd class: 

Given an arbitrary polynomial P,, we can express it as a sum of eight expressions of each 
of these eight forms; it is symmetric with regard to p ,  p, u and of the same degree as P ,  with 
regard to x, y ,  z .  

Next, consider the reverse process. 
(1) Take a symmetric function with regard to p,  p, I/ such asf(p2)f(pz)f(vz). Since this 

is symmetric with regard to the roots of 

it should be rational with regard to the coefficients of this equation; hence it should be rational 
with regard to x2, r", 2'. In fact, by factorizing f (p2) in the form 

j - (p ' )  = (p'-  al)  (p' - az) * . . (p' - a t ) ,  

we obtain 
li 

f(p*)f(,,,z)f(vq = rJ [(p"-cri)(,,,2--(yi)(~2-Qli)l. 
i= l  

Put A2= ai in our fundamental identity (equation 42); we obtain 

or 
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(2) Similarly. 

m f ( p 2 )  m f ( p 2 )  m f ( v 2 )  =xQ ( x 2 ,  y2, z2 ) ,  

m f ( p 2 )  m f ( p 2 )  - f ( v 2 )  =zQ(x2, p, z 2 ) .  

(3) - u2) (p2 - b2)  f ( p 2 )  = xyQ(x2, y2, z 2 ) ,  rl v ' ( p  
P. Ir, v 

2-c2) ( p 2 - u 2 )  f ( p 2 )  = z x Q ( x ~ ,  y2, 2'). rl V(p 
P. Ir. v 

rl 1J(p2-a2 )  ( p 2 - b 2 )  ( p 2 - c 2 )  f ( p 2 )  =xyzQ(x2,  y2, z 2 ) .  
P .  Ir. v 

(4) 

Problems concerning a sphere are dealt with by a linear combination of spherical 
harmonics 

rnPn(cos e ) ,  rnP; (cos e) ::L m q ,  

with positive integers m, n. If we put cos e= zlr, then r P n  (cos e) is expressed as a product of 
linear factors with respect to x2,  9, z2. Tesseral harmonics are either of the eight forms, such 
as a product of linear factors with regard to x2,  9, 2, multiplied by either 1, x, y, z, p, ZX, 
XY, XYZ. 

Similar problems concerning an ellipsoid are dealt with by ellipsoidal harmonics (Lam&, * 

1839; Niven, 1892; Hobson, 1931). 

a, e,=h;; 
X 2  Y2 22 +-+-- 

&--a2 8,-b2 e , - ~ ~  (59) 

then the foregoing four types of expressions are written 

0 1 0 2  . . . @ m = I I  (0) is an ellipsoidal harmonic of the first class; xrI (0) is of the second, 
yzII(6) of'the third, xyzII( 0) of the fourth. 

In order that IT(@) = 0 1 0 2  . . . 0, may satisfy the Laplace equation, it should satisfy 

~ ~ 2 m 8  -)=O, (60) +-+E' 2 
p=1 a@, 8,-a2 +- e p - b 2  OP-c2 q=l 8,-Oq 

rI(0) = 
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or we would have 

m 

q= 1 
Put AI(8) =n (e-ed, 

a polynomial of degree m with regard to 8: 

is a sum of m- 1 products among 8- 81, . . .) 8- Om, and 

is a sum of m - 2 products among 0- 81, . . . , 0 - Hence 

is twice the sum of the reciprocals of e,, - tI1, . . . e,, - 8,. Since 

is harmonic, 

should vanish for 8 = el, . . . , 8,. Hence 

is a polynomial in 8 which vanishes for 8= 81, . . ., 8,. Hence it should have factors (0-0, )  
. . . (e - e,,,) and be of degree m + 1 with regard to 8; and indeed the coefficient of em-1 

is m(m+1/2). The factor of [ (O-e l )  . . . (8-8m)] is thus m(m+1/2)8+C, where c is 
determined later. Hence 

r 

= [m(m+ 1/2)8+C/4]A1(8). 

An ellipsoidal harmonic of the first class of even degree n is of the form 
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where 81, . . ., 8,,/2 are zeros of a polynomial R 1 ( 8 )  of degree n/2, and is the solution of the 
differential equation 

N ( e -  ~ 2 )  (e- b2) (e- c2) de [ d ( e - - a ' ) ( e - b 2 ) ( e - c 2 )  dA1 - dB 1 
= [n(n+ l)O+C]R1(8). (61) 

This is called the Lamb equation. 
For the second class, take xn (0,) of degree 2m + 1, and consider 

Put 

we again obtain the Lam6 equation 

of degree 2m+-e obtain the same equation with n=2m+2. 
For the fourth class, take 

of degree 2m + 3; we obtain the same equation with n= 2m + 3. 
As we shall see later, there are n/2 + 1 of the first class and 3n/2 of the third class when 

n is even, and there are 3 ( n +  1)/2 of the second and (n -  1)/2 of the fourth class when n 
is odd; in total there are 2n+ 1 harmonics. 

LAME EQUATION 

We try the solution of AV=O in the form V = f ( p 2 ) f ( p 2 ) f ( v 2 ) = R M N ;  then, substi- 
tuting in equation 46, we obtain 



Hence 

P2 

I 1  

P2 U2 

1 1 
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= 0, 

or, with constants K and H ,  and by equation 47, 

-= (Hp2+K)R ,  d2M= (Hp2+K)M,  - d2N= (Hu2+K)N.  
du2 dv2 dw2 

Let us determine H and K so that R is a polynomial f ( p 2 )  of p multiplied by either of the 
eight factors 1, v, w, m, d(p2 -b2 ) (p2 - -c2 ) ,  d ( p 2 - c 2 ) ( p 2 - a 2 ) ,  
d ( p 2  - a') (p2 - b 2 ) ,  d ( p 2  - a 2 )  (p2  - b 2 )  (p2 - c 2 ) ;  f ( p 2 )  or such products are called 
Lame' functions, and the product f(p2)f(p2)f(v2) or similar products are called Lame' 
products. 

A similar computation on equation 57 gives 

(Hpu + B ) R  = 0,  B= Hh+ K. (64) 
d'R 
du2 
~- 

This is called the Lame' equation. It can be shown that H = n ( n  + 1)  ; but B or K should be 
so chosen that the solution is of the form we desire. 

By a similar procedure we can derive from ellipsoidal harmonics II(0) the Lam6 equation 
in the form 

R. dR [n(n+ l)p'+B'] 
d ( p 2 ) - 4 ( p 2 - ~ ' )  ( p 2 - b 2 )  ( p 2 - c 2 )  

1/2 +- d ( p 2 )  2 +  (m p2 - b2 
d'R 1/2 

This is called the algebraic form of the Lam6 equation (Stieltjes, 1885; Klein, 1894; Bccher, 
1894); putting B' = B -  (1/3)n(n+ 1) (a" b2 + 3) , we obtain 

-- d2R [n(n+ l )pu+B] R = 0 ,  
du 

which is of Weierstrass's form. Also, by putting s=pu, we obtain 

which has the singularities at el, e2, e3; the corresponding exponents are 0 and 1/2. The expo- 
nents for the singularity at 03 are -n/2 and (n+1)1/2. Put p = k  s m ,  a = k ,  b = l ,  c=O, 
x = u G ,  B= [ l / ( e l - e 3 ) ] [ B + e 3 n ( n + l ) ] ;  then we obtain 

[ n( n + l)k2 sn2 xf E ]  R = 0 ,  
d2R 
d.x 
~- 

which is Jacobi's form. 
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PARTICULAR SOLUTIONS 

We try to satisfy equation 64 by a polynominal R of degree n; the solutions belong to 
four classes: 

I: R = f ( p 2 ) ,  n=2k 

11: R = w f ( p z ) ,  R = w f ( p 2 ) ,  R= v m f ( p 2 ) ,  n = 2 k + 1 ,  

choosing constant B suitably. Otherwise the solution is a doubly periodic function of the 
second species by Hermite. Note: The above values of n for class I11 (2k + 2) and class IV 
(2k+3)  belong to what Appell (1921, p. 136) calls the "general picture (Tableau g6n6ral)" 
for those classes. In the special discussion which follows (here, as in Appell), n=2k for 
class I11 and n = 2k + 1 for class IV. 

Note also that a given class may have more than one "form"; these are indicated: 111, 
112, etc. 

Class I: 
R = f ( p U ) = p ' . U + a l p " - ' U + .  . . + ( Y k - i ( p U ) + ( Y k ,  n=2k.  

Substitute this expression for R in equation 64 and use equations 51 and 52 for KJ' and p"; 
then it is evident from the coefficient of p k + 1  that n= 2k. From the coefficient of pk, we obtain 

4 (k - 1 )  ( k  - 2)a1+ 6 (k - 1 )  a1 = n ( n  + 1 )  a1 + B ,  or B = - 2 (2n - 1 )  a1. (65) 

From the coefficient of po we obtain the characteristic equation, which is an algebraic equation 
of degree k + 1 for class I: 

C i + l  ( B )  =O. (66) 

This equation is obtained after substituting the values of ( ~ 1 ,  . . ., (Yk determined by the 
equations obtained from the coefficients of p k - l ,  . . ., pl.  

Class 111: 

The characteristic equations are of degree k with regard to B for three forms of class 111: 

Thus, when n is even, the number of roots of equation 66 is k +  1 ,  and the number of roots of 
equation 67 is 3k; in total, the number of roots B is 4k + 1 = 2n + 1. 

Class 11: 

~ = V = ( p " + a ~ p k + i +  . . . + a k ) ,  n=2k+1 .  
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The characteristic equations are of degree k + 1:  

C i i l ( B )  = 0 ,  C P + l ( B )  = 0 ,  C i $ l ( B )  = O .  (68) 
Class IV: 

R = -  G ( p k - ' +  . . . n = 2 k + 1 .  

The characteristic equation is of degree k: 

C y  ( B )  = 0.  (69) 

Thus, when n is odd, we have 3 ( k  + 1) solutions for B of the second class and k solutions 
of the fourth class; in total, we have 4 k + 3 = 2 n + 1  solutions. Thus in either of the cases, 
we obtain 2n+ 1 values of B; hence 2n+ 1 Lam4 functions 

Hence there are 2n+ 1 products RjMjNj,  or 2n+ 1 Lam6 polynomials ai(%, y, Z) , . . . , 
Q",n+l(x,  y, z ) ,  each of which is a linear combination of the Lam6 products 

where Ai are 2n+ 1 arbitrary constants, and satisfy AV=O. 
It  can be shown that the roots of the characteristic equation are all real and distinct and 

that the 2 n + l  Lam6 functions are linearly independent. We give the expressions for the 
Lam6 functions of low degree. (The order follows the value of n rather than class number.) 
n = l :  2 n + l = 3  functions: 

RMN= - s -=C.u, C= constant. 

n = 2: 2n + 1 = 5 functions: 
Class 111: 

R = -  G, . . ., . . ., 
R M N =  - - -. 

= Cxy. 
Class I: 

-- f$- (%u + B )  = R .  

Put R = p u + a ,  then d2Rldu2=p"u=6pZ-gg2/2 and 6 p 2 - g 2 / 2 = ( 6 p + B ) ( p + a ) .  
Then 6a + B = 0 and aB = - gz/2.,The characteristic equation is B2 = 3g2. 
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Hence we have two functions 
1 E = QU +6 l&. 

n = 3: 2n + 1 7 functions: 
Class IV: 'I 

Class 11: 
d u ,  

(,,+%-- l/k"u--e, (a= i, 2 , 3 ) .  
2 10 "1 

The characteristic equation is B2 
We have 2 X 3 functions of class 11. 

Class I: 

6Be1+ 45eq - 15gz = 0. 

n=4: 2 n + l = 9  functions: 

The characteristic equation B3 - 52g~B + 560g3 = 0 has three roots; we have three 
functions of class I. 

Class 111: 
v(pu-eo) (pu-er). 

The characteristic equation B2 + lOBe1- 35e; - 7g-z = 0 has two roots; we have six 
functions of class 111. 

LAME FUNCTIONS AND SPHERICAL FUNCTIONS 

We derive various properties of Lamb functions by comparing them with spherical 
functions. Put 

x=x1-, y=y1-, z=z1Vp=2;  (71) 

then x f +  y ~ + z ~ - l = O .  As p, u vary, (x, y, z )  describes an ellipsoid, and (xi, p ,  21) a 
sphere. We have 

then the Lamb product MN of order n, being a function of p and u, can be expressed in terms 
of 8 and cp in the form 

M N =  P n  (sin 8 COS cp, sin 8 sin cp, COS 8 )  = Y n .  (74) 

In fact, let the corresponding polynomial for RMN be Q n  and separate it into a sum of homo- 
geneous polynomials 



68 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS 

RMN=pnP,, t, x, 5)  + pn-lPn-l e, 2 5 )  + . . . 
P P  P' P 

= pnpn (y sin 8 cos p, sin 8 sin p, w c o s e ) + .  . . . 
P P 

For p+ we have 

and we obtain equation 74. 
Conversely, the most general spherical functions are written 

or, more gefierally, 

Suppose that a+ b; take b2=a2-E ,  p2=a2-ep'2, 0 < p' < 1, E+ 0. Then 

and 
x= rl sin 8 COS p, y= ri sin 8 sin p, z =  rz cos 8. (78) 

Let a+ b; then y/x= tan p; we arrive by this degeneration at a function of 8 and p. The 
product M N = f ( p ) f ( v )  satisfies the equation for a spherical function, and reduces to 
Yn(8, p). The spherical harmonics are 

X,' sin pp, X,' cos pp, ( p =  0, 1, . . ., n ) ,  (79) 
where 

Thus 
cos M+ pp, N+ Xp. n. sin 
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Class I: n = 2k and M+ fi (pt2) = fi ( cos2 p) = cos pp, since n is even. 
Thus the limiting values of M are 

cos O =  1, cos 2p, cos 4q, . . ., cos 2kp= cos np; 

and those of N are 
xo,, xi, . . ., x,": 

The Lam6 equation 

-- d2M- [n(n+ l)pv+B]M, 
dv2 

after substitution of p2=a2- e p t 2 ,  a2- b2=e,  p'= cos p, becomes d2Mldp2= constant M, 
with 

n ( n +  l )a2+K 
a2 - c2 

constant = - p2=- (P'O, 2,4 ,  - *, n ) ,  

B = n( n+ 1)h + K. 

The value of constant K is determined by 

= 0 ,  n(n+ l ) a2+  K1 

a2- C 2 

. . .  

n ( n +  l)a2+.Kz- 
- 22, a2 - c2 

Class 111: n=2k, and-M=V- v R f ( p 2 )  --* V ~ ( l - ~ l . ' ~ ) ( a ~ - ~ Z ) f i ( p ' ~ ) ;  

The characteristic equation is 
f i s  of degree k-1, andM+sinpp,  ( p = l ,  3 . . ., %k-1). 

n(n+ l )a2+K-  
a2- 2 -p2 (p=1 ,3 ,  . . . ,2k- l ) .  

C 
(83) 

There are k roots for each class 1111, IIE, and I&. Similarly, we obtain 2n+ 1 equations 

Next, suppose that b+ c; we take b2= cz + E and 3 = 3 + wr2. Everything proceeds 
of the form of equations 82 and 83 for n odd, 2nd class and 4th class. 

similarly. 

THEOREMS 

All roots of the characteristic equations are real (Liouville, 1841). Suppose that n is even: 
then there are k + 1 solutions of type I, and k solutions of type 1111. Let the coefficients of the 
highest degree terms of B be equal to 1. Let b vary continuously between a and > by fixing 
a and c. The coefficients, and hence the roots, vary continuously, and imaginary roots can 
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appear at first when two consecutive real roots become equal. Let b + a; when b = a, the 
characteristic equations reduce to the form of equations 82 and 83. The roots of equation 83 
are bisected by the roots of equation 82: 

B1B2 . . . BkBk+l, (834 

BiB6 . . . B;. (Bb) 

Let b vary continuously from a to c (the roots vary continuously). Suppose that BJ= B2=Bi, 
since B ;  is always between BI and Bz; that is, a double root of equation 83a would then coin- 
cide with a simple root of equation 83b. On this assumption, we should have 

-- d z M -  [n(n+l)pv+B1]M, dv2 --p- dzM'-  [ n ( n + l ) p v + B ; ] y ,  

with B 1 =  B;. Then 

- constant. d2M d2M' dM dM' 
dv2 dv dv dv. 

MI-- M,=O, M'--M-- 

If we add 20 or 2w' to v, then M and dMldv remain unaltered, but M'and dM'/dvchange their 
signs. Hence M'(dM/dv) -M(dM'/dv) would change its sign. Thus we should have 
M' (dM/dv) - M(dM'/dv) = 0, or ( M ' / M )  = constant; this is impossible. Accordingly, equa- 
tions 83a and 83b cannot have any equal root, and equation 83a cannot have any double roots. 
Therefore the roots are always real. If the axes of the ellipsoid are imaginary, then the roots 
may be double, and 2n+ 1 functions of order n may then coincide (Cohn, 1888). 

The 2n +-1 Lam6 functions of order n are hnearlyindependent. Suppose that there were 
a relation' 

9 y i ~ i  = 0, r < 2n + 1, 
a= 1 

with constants yi. Carry out the operation 

d2 
du2 n(n+ 1)pu -- 

and repeat it (r+ 1 )  times. Then, since 

-- CFR [n(n + 1)pu + BIR =: 0, 
du2 

we obtain 

-&(B~)SR~=O ( s = 1 , 2 , .  . . , r - l ) ,  
i= 1 

where Bi is the corresponding value of B for the function Ri. 
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Eliminating yiRi(i= 1, 2 ,  . . ., r) from these r equations, we obtain 

1 1 . . .  1 
Bi  BZ - . Br 
........*.__.............................. 
(BiIr-l (&)'-I. . .(Br)r-" 

l . . . r  
= O  E n' (Bi -Bj ) .  

.\+! 
2 J 

As we have proved, there is no equal root. Hence this is contradictory, and these Lamb 
equations are linearly independent. 

DEVELOPMENT IN LAME FUNCTIONS 

Write 

and suppose that the ellipsoid EO is for p=po.  Then, 

/IE, &oMNMlNlda= 0, 

where the integration is extended over the surface Eo; MN and MINI are different Lam6 
products either of the same order or of different orders. This relation (equation 85) shows 
that the system of Lamb products is a set of orthogonal functions. In fact, V=RMN and 
VI = RIMIN1 are potentials and satisfy AV= AV1= 0. By Green's theorem, 

/T(VAVl-VIAV)dT= 

Suppose that p increases in the outward normal; then dn= a d p ,  and V' =a Vla n by equation 
47. Hence 

(86) 

Similarly, a VJa n = 4'R;MINl. Consequently, the Green formula becomes 

/ (RMNR;MiNl-  R1M1N1RrMN)da= 0. 
/ E o  

For p = PO, the Lamb functions R ,  R', R 1 ,  R; are constant. Hence the system of Lam6 prod- 
ucts is a set of orthogonal functions. Note that we have proved the relation 

From this theorem, we can develop any arbitrary function over the surface of the ellip- 
soid p = PO. Suppose that 
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W 

@(p, V)=xAkMkNk.  
0 

From equation 85, we have 

Now &I = O d p ,  dsz = ydu,  d a  = ds1ds2 = /3 ydpdu,  or 

p2-  V 2 
d u  = dpdu. eo- 

From equation 89, we obtain 

Thus the coefficient Ak can be determined (Lindemann, 1882; Titchmarsh, 1946). Especially, 
if the degree of @ ( p ,  u )  is lower than that of MkNk, then 

Furthermore, equation 85 can be written 

where the limits of the integration are 0 < (v - o) /i < 4o'/iO < w - 0' < 40. Since there is no 
function other than any function of the Lam6 products, such as MINI, which satisfie; equation 
85, the system of Lam6 products is complete, and equation 88 is unique. For the convergence 
of the series (equation 88), it is necessary and sufficient to have the convergence of the series 

in accordance with Riesz-Fischer's theorem. We can extend this to almost-everywhere 
convergence by Menchoff s theorem. 

ZERO OF LAME FUNCTIONS 

A polynomial f(p2) of p2 has a real distinct root between a', and c2. 
Theorem: Suppose that there were an imaginary root. Factorize f ( p 2 )  into a factor cp (p')  

with real roots alone and a factor G(p2) with imaginary roots alone, so thatf(p2) = cp(p2)JI(p2); , 
we know that $(@) always has the same sign and cp(p2) changes its sign. Take Mk=f(P2) ,  
Nk=f(u2) ,  and put @(p,  u )  =cp(p2)cp(uz): 
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But the degree of p, and hence of a, is lower than that of M k .  Accordingly, this integral is 
zero by equation 91. But the right-hand side is positive. Hence it is impossible to have imagi- 
nary factors. 

Next suppose that we have multiple roots. Factorize f ( p 2 )  into a factor p(pz) with real 
roots alone and a factor p(pz) with even multiple roots alone. We can carry out the proof 
similarly to the above, and find that it is impossible to have multiple roots. 

Finally, factorize f ( p 2 )  into a factor p(p2) with roots between u2 and c2 alone and a 
factor $(p2)  with the roots outside of u2 and c2 alone. We can carry out the proof similarly 
and find that it is impossible to have roots outside a2 and c2. Note that the Legendre poly- 
nomials have roots between - 1 and + 1 and that the roots are real and distinct. 

Stieltjes' theorem (Stieltjes, 1885): A Lam6 function of degree n can be written 

K 3  m 
(p2  - a2)  *'(p2 - b 2 )  I(*(pZ - c 2 )  rl[ (pz - ~ P P )  , 

p = 1  

where K I ,  K Z ,  K3 are 0 or 1/2, al, . . ., a m  are real and distinct and are distinct from either 
of a2 or b2 or c2 ,  and n / 2 = m + ~ 1 + ~ 2 + ~ 3 .  The r-th fuaction among these m + l  Lam6 
functions has its r-1 zeros between c2 and b2, and its remaining m - r +  1 zeros between 
b2 and a2; thus the zeros a1 , . . . , a m  for these m+ 1 functions are contained between 
c2 and a2. 

For proof, take real variables (PI, . . ., pm such as 

c 2 < p P ~ b 2  
b2 S pp S a2 

( p = l ,  . . ., r - 1 ) ,  

( p = r ,  r + l ,  . . ., m),  

and consider 

II becomes 0 when all pp take their smallest values and when they take their largest values. 
If Cbp are all distinct from each other and are distinct from either u2 or b2 or c2, then II > 0; II is 
continuously bounded and can reach its nonzero, positive upper bound. The maximum 
condition is 

- . . . =o, a l o g n  a 1ogn 
a'P1 a4J2 

-- 

or 

K1+1/4 K z + 1 / 4  K3+1/4 1 +-+- =o, ( p = l ,  2, . . ., m). 
p p - a 2  p p - b 2  p P - c 2  +z' ( P p - ( P q  

This is equation 60 by which we have determined a1, az, . . ., ap. Thus the equation for 
determining ax, . . ., am is 

c 2 < a p < b 2 ,  ( p = 1 , 2 ,  . . . , r - 1 ) ,  

b z < a p < u z ,  ( p = r , r + l ,  . , ., m).  

375-031 0 - 71 - 6 
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Hence if r is one of 1, 2 ,  . . ., -m+ 1, then there is a Lam6 function that has r--1 zeros 
between c2 and b2 and m - r + 1 zeros between b2 and a2. 

This theorem is a particular case of Klein's oscillation theorem (Klein, 1881); that is, 
in the equation 

g > 0, K, 8, g are continuous, and with the boundary conditions that 

4Yr(ar)  -aryXar) = O ,  P;yr(br) -Pryb(br) =o ,  (r=O, 1, . . ., n ) ,  

in the n+ 1 closed intervals (a&), . . ., ( a d , ) ,  ao < bo < a1 < b l <  . . . < an < b,, we 
can determine uniquely the characteristic numbers Ao, AI,  . . . , An so that the characteristic 
function yr has just mr zeros in ar < x < b,, where mo, ml, . . ., mn are given positive num- 
bers including zero. The value of A for which the solution exists that is not identically zero 
is called the characteristic value, and the corresponding solution the characteristic function. 
Lam6 products are characteristic functions, and the corresponding B are the characteristic 
values. 

LAME FUNCTION OF THE SECOND KIND 

The Lam6 functions R that we have derived are particular solutions of the Lam6 equa- 
tion; Hermite found other particular solutions S independent of R :  

we obtain 

or 

-= d2S [ n ( n +  l ) p u + ~ ] ~ .  
du2 

d2S d2R 
du2 du2 R - - S - = O ,  

dS dR 
du du R - - S - = 2 n + l .  

Such Lam6 functions are of the second kind. Integrating this equation gives 

The general solution of the Lam6 equation is C1R +C2S, with arbitrary constants C1 and C 2 .  
( 1 )  SMN satisfies AV=O as does RMN: 

As p varies from w to a, S > 0 for all p .  Since R is of degree n, 

S = p n f m  p (-- 2 n + l +  . . . ) d p = p . , , + .  1 . . . 

While the development of p begins with pn, S begins with 1/pn+l.  



LANIE FUNCTIONS 75 

(2) Suppose that R n  is of the first class; then the poles of 1/[R(s)]2, where s=pu from 
equation 49, are u1, . . . , un. Function R (s) = a1 (u - ur) + a 2  (u - ur) + . . . ; but we see 
that a2= 0 by inserting this series expansion in the differential equation. Hence the principal 
part of 1/[R(s)12 is l /c~ ; (u-ur )~  with residue 0. Thus we can determine A r  so that 

has no pole at the points congruent to any one of ur. This doubly periodic expression without 
any pole is equal to a constant A by Liouville’s theorem. Hence, by integrating we obtain 

Since R ( s ) = R ( p u )  is an even function of u, we can group the roots in pairs such that 
Un-r=-ur+l, and we have 

Hence 

where ~ n / 2 - 1  (s) is a polynomial in s of degree n/2 - 1 (Liouville, 1845; Heine, 1845; Linde- 
mann, 1882). 

For computing the numerical values of Lam6 functions, Scharma (1936) gave recurrence 
formulas for Lam6 functions after the fashion of Whittaker (1929) for Mathieu functions and 
of Humbert (1917) for Legendre functions. Write the Lam6 product by Ei(u)Ei(v)Ei (w); 
then we obtain 

where pm, ,,,t and p m t ,  

differential equations. 
are constant, such that am, mt=a, , , t ,  m, and Pmt ,  are determined by 

Whittaker (1914a, 1914b) obtained an integral equation for Lam6 functions: 

y(x) = A /4K (dnxdns + k cosh Tcnxcns + kk’ sinh qsnxsnx)ny(s)ds, 
0 

where q is a constant, k2= ( u 2 - b 2 ) / ( u 2 - c 2 ) ,  k2+kr2=1. The method has beengeneralized 
to functions satisfying Sturm-Liouville’s boundary value problems (Whittaker, 1914c; Ince, 
1921, 1923). 
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NONALGEBRAIC SOLUTION 

We have obtained the solution in the form of polynomials; we now seek the solution with- 
out such a restriction. For n=integer such a solution has been obtained by Hermite (1878) 
and Halphen (1888); the solution is called the Heine-Hermite function. For n equals a half- 
integer, the solution is called the Heine-Vungerin function (Brioschi, 1878; Halphen, 1888; 
and Crawford, 1895). 

A uniform function which has no singularity other than poles is called meromorphic. 
If a meromorphic function is multiplied by a constant p or p’ when the period 2w or 20’ is 
added to the variable u, then the meromorphic function is said to be doubly periodic of the 
second species: 

F ( u+ 2w) = pF ( u )  , F( u + 2w’) = p % ( u ) .  

If @(u+2w) =eau+b@(u), @(u+2w’ )  =ea’u+b’@(u) with constants a ,  b ,  a’, b‘; then 
F is called doubly periodic of the third species by Hermite. Such functions are written in the 
form 

where A =  (1/20) log p, and A, B,  a, /3 are constants. Or by using Weierstrass a function 

we have 

Suppose that y is a doubly periodic function of the second species; u=O is a pole of 
order n. If we can choose so that the roots of y are the same as the roots of y“, then y”/y is 
doubly periodic and has a pole at u = 0. Hence it is of the form n(n+ l ) p u +  B. Such a func- 
tion y can then satisfy the Lam6 equation. Take 

where n extends over n factors: 

d=Z [C(u+a) -&-u-Ca] =E - 1 p’u-p’a 
Y 2 pu-pa ’ 

or 

Decompose the last sum into simple elements; then 
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Collect the terms of the form { ( u t - a )  -{(a) and put the coefficient equal to zero. Similarly, 
operate on { ( u + b )  - { ( b ) .  If we put 

pa=% p 'a=a ' ,  p b = p Y r  . p'b=p' ,  . . ., 
with 

a'2=4a3-gza-g3, pf2=4p3-g2p-g3, . . ., 
then we obtain n equations 

a'+p' a'+y' a'+S' 
a - p  a - Y  a-s  +-+- +. . .=o, 

= 0, p'+a' p'+r'+ .  * , +- p-a p - Y  

among these n equations, n-  1 are independent. The remaining equation is y"/y=n(n+ 1)pu 
+ (2n - 1)Zpa. Thus the nth equation is 

( 2 n - 1 )  (a+p+. . .) = B .  

For n= 1, we have 

and yn= (2pu+B)y .  
For n=2 ,  

and 

p ' a + p ' b = O ,  pa+pb=bB, 

a2 -pa+pz---tg2 =o.. 

These are Heine-Hermite functions (Halphen, 1888; Hermite, 1885). 
For the Heine-Wangerin function, we put (vz- 1/4) instead of n(n+ 1 )  for the first type 

(Wangerin, 1904) and put (2u+ 1 )  ( 2 v + 3 ) / 4  instead of n(n+ 1 )  for the second type (Haentz- 
schel, 1893): 

(1st type) -- 

Compare Sparre (1883). 
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GENERALIZED LAME! FUNCTIONS 

An arbitrary surface of the fourth order that has a circle as a double curve is called a 
cyclid. Darboux considered an orthogonal system from confocal cyclids (Darboux, 1887, 
1910; Klein, 1893,1926; Blaschke, 1929; BGcher, 1894). 

The equation of a three-dimensional sphere is 

K ( X 2  + y2 + Z 2 )  + 2AX+ 2BY + 2CZ + D = 0,  

where the radius is given by p2 = (A2  + B2 + C2 - D K ) / K 2 .  This equation can be expressed 
in the form 

X 2  + y2 + Z 2  - R2+ i E X 2  + Y2 + Z 2  + R 2  __ 
- 0, R R 2aX+ 2py+ 2yz + s 

where the coordinates of the center are 

xo=-- OrR yo=-- @ , zo=-.- YR 
s + ~ E '  6 + i e  s + i c 7  

and 

R d a 2  +p2 + y2 + S2 + e2 
S+ ie  P= 

If we take a2+fi2+y2+S2+~2=1, then the radius is R/(S+iE). The condition for the ortho- 
gonality of two spheres is 

aa ' + pp ' + yy ' + ss ' + E€ ' = 0. 

Consider five spheres, any two of which are orthogonal and let 

X 2 + P + Z 2 + R 2 - 0  - ( k = l ,  2, . . ., 5 )  , R + iEk 

X 2  + Y 2  + Z 2  - R ')); ( X 2  + Y2 + Z 2  + R2 "+ u2 + 4y2 + dz2 = o, 
k= 1 (2r=( R iR 

or 
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Such Xk are called the pentaspherical coordinates: 
5 

A surface which is represented by 

is called a “cyclid” and is a surface of the fourth order in Cartesian coordinates. Similarly 
to the quadrics in Cartesian coordinates, the equation 

represents a triply orthogonal system of confocal cyclids, and a point in space is determined 
by p,  p, v such that 

Let 

then AV= 0 is satisfied if q satisfies 

Or, letting q ( p ,  v, p )  =E’(p)E”(v)E”‘(p), we obtain 

where 

The generalized Lam6 equation is 
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1 +. . .+- x - e n ) d x  e 

or 

A study was made by Klein (1894, 1933) on the theory of monodromy goups, ikosahedron 
groups, etc. For Lam6 functions see the works by Todhunter (1875); Heine (1878, 1881); 
Halphen (1888); Forsyth (1902); Poincar6 (1885, 1902); Wangerin (1904); Appell(l921); Hum- 
bert (1926); Strutt (1932); McLachlin (1945). 

These two figures are seen in BGcher,1894. 
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CHAPTER IV 

Theory of Poincar6 

DlRlCHLET PROBLEM ON AN ELLIPSOID 

Let Eo be an ellipsoid for p=po, and suppose that a harmonic function VO is given on 
the surface as a function of points on the surface: 

A harmonic function for the interior region is given by 

and for the exterior region by 

Since RI, < RB for p < PO,  and s k  < S$ for p > P O ,  the series in equations 98 and 99 are con- 
vergent if the series in equation 97 is convergent. 

Suppose that the potentials Y O ,  Vi ,  Ve are caused by the surface density distribution 5. 
Then 

(100) 

and 

83 
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Then 

we know { from (Yk. Conversely when { is known, we obtain (Yk from equation 102 and the 
potential from equations 97,98, and 99. 

As a special case, 

or, since 

we have 

In particular, if n=O and Ro=Mo=NO= 1 ,  then 

Hence the density distribution {= ELOMONO= € 8 0  generates a potential Vo = ~ T T T E U O ,  and, since 
&=Rg= 1 and Sp=uo, &=u, we have 

The equipotential surface outside is u= constant; i.e., p=O (i.e., confocal ellipsoids), and 
the potential inside is constant, which is in accord with Newton's theorem. Here { = E L o  
denotes the thickness of the layer between two homothetic concentric ellipsoids, because 

where 
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POTENTIAL OF AN ELLIPSOID 

According to PoincarB, we put 

85 

1 1 1 
2 -  h ,  - (a2-b2) ( a 2 - C 2 )  ’ 4 = (b2-a2) (b2-(9) ’ h23= (cZ-$) ($-b2) 

We put for n = 2: 

where a2 > a: > bz > af > cz. However, 

and the volume of the ellipsoid is 

I 

COS (n ,  x)=hl/MIN1R4, COS ( n ,  y)=hz/MzN2R5, 
COS (n ,  Z )  =h&M3N3Rs, 

Y 

where n is the external normal. 
Now displace an ellipsoid E to an ellipsoid E‘ by a trans- 

lation O ~ ‘ = E  along the x-axis. The potential VI due to E’ at 
(x, y, z) is equal to the potential Y due to E‘ at (x-E, y, 2). 
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Hence av 
Vi(% y, 2) = V ( x -  E, y, 2) = V ( x ,  Y, 2) - E 

* 

The difference at a point ( x ,  y, z) of the potentials caused by E' and E is due to the 
potential V' = Vi - V = -  E(aV/ax) of the surface layer distribution [= PP". Now PP' = E and ' 

(113) [ = E  cos (PT',  PPI))=€ cos ( n ,  x ) = E ~ I R ! ~ o M I N I  

from equation 102. Hence, from equations 97 and 98, we obtain 

From equation 106, we obtain 

Hence, 

Similarly, 

ELLIPSOID AS AN EQUILIBRIUM FIGURE 

Putting V in the equation of the equilibrium surface 

69 
2 (118) U= V + -  (x2+ y2) = constant, 

we have 

which should coincide with 

Thus the condition is 

or 
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and 

For a Maclaurin spheroid b= e, equation 121 is satisfied. For a Jacobi ellipsoid, equation 121 
can be put in the form 

RiSi - R4S4 
3 5 

---. 

CONDITION FOR AN EQUILIBRIUM FIGURE 

Surface gravity g=- dUldn, on the surface of an ellipsoid 

X 2  2 2  U = K ( 7 + -  a p i - b 2  y2 +--1 p 2 -  
o c  

satisfies an important relation: 
g e  = constant. 

The value of the constant is determined at the pole, where y=z=O, 

(125) 
u=V, x = R t ,  p = b ,  v=c, g=TSf,  eo-* 1 

gee=- 4 ~ R : s ; .  

RF,o 
Hence, 

(126) 3 

We deform E to another equilibrium figure E', which is repre- 

-=Q sented by 6. At a point P on E, we have 

6J2 

2 
Uo= Vo+- (yi+zi) = constant. 

At a point P" on E', we have U=UO+ (dUldn){=Uo-g[ .  Let the potential due to the 
deformed layer be v;  then the potential due to the deformed E' at P" is 

U + v =  Uo-g<+v= constant. 

In order that E' be an equilibrium figure, we should have 

v -&= constant. 

Now we have by equation 102 
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where p k  and a!k are both constant and of degree 0. Hence, from equation 91 we have 

Since the volume is constant, 

@u=O, I 
or 

or, by the above relation, 

or po=O. Thus, 

Furthermore, 

Inserting equations 126, 128, and 129 in equation 127, we obtain 

This should hold for all values of p and v. Hence we should have 

pk((;L;ITI-’+)=O k ( k = l ,  2, . . ., 03) .  

If the quantity F k  in the parentheses of equation 130 is not zero, then P k  must be zero. If all 
such quantities F k  are not zero, then all p k  should be zero, and there is no other equilibrium 
figure. We proceed to see whether F k = O .  Where n = l :  there are only R1, Rz ,  R3. For k = l ,  
we have pI(SIR1-SIRI)  G O .  For k=2,  3, we have &=p3=0,  since S z R z - S t R l  > 0 ,  
S3R3 -SIR1 > 0 by equation 122. Where n=2; for k=4, we have 

For a Jacobi ellipsoid, we have always F k = O  by equation 123; hence p 4  is arbitrary. 
But for k=5, 6, 7, 8, we should have p 5 = p ~ = p 7 = p ~ = 0  since F k  # O  in general. It can be 
shown that this p 4  does not produce any new equilibrium figure, since a figure with 
( = Pl/oM1N1 is the same figure displaced by E = &/(hlR9) along the x-axis, and a figure with 
(=/34/0M4N4 is the same figure obtained by rotating through an angle 66 around the x-axis, 
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where 

The question now arises whether we can have 

-0  ( k = 5 , 6 ,  . . .). R l $ k  R S i  
2 n + l  3 .. 

If one of such relations holds, then there is an equilibrium figure in the vicinity of an ellipsoidal 
equilibrium figure, which is called the ellipsoid of bifurcation. 

Poincarb called the expression 

the coeficient of stability (Poincarb, 1885 and 1902). It can be shown that should not 
always vary in the same sense in order to give an equilibrium figure. Since four among the 
eight forms of Rk are divisible by R1 = and since Rk/Rl keeps the same sign while 
p2 varies from+m to a2, it can be shown also that there exists one and only one root of equa- 
tion 131 with m= l for the four forms without the factor v. For example, we take 
n = 2 and R4= d( p2 - b2)  ( p2 - c2). Now R4 is not divisible by R1. Hence 

has one and only one root of p”. This is a Jacobi ellipsoid. 

EQUILIBRIUM FIGURES DERIVED FROM MACLAURIN SPHEROIDS 

Our conditions are now 

In this case, Lam6 functions are reduced to spherical functions: 

dn+P(l R k= F ( is) = h ( 1 4- s2) d2 dsn+P ’ 

where 

In order that R k  not be divisible by R1, that is, bys, we should have n + p  even. Take n to be 
even; then p should be even, and 0 < p < R. For each value of p ,  we have two solutions 

315-031 0 - 71 - 7 
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M k = F ( t )  =x: ,  N k =  COS pcp, 

and 

One of the two figures represented by these two solutions is obtained by rotating the other. 
For p =  0, we have 

Quantity 5 becomes zero for n values of p. The figure is symmetrical with respect to the yz- 
plane, and 5 vanishes and changes sign on the corresponding parallels. Neither t=O nor 
t = l  is the root; this is a zonal figure. 

For p = n, we have 

and 5 becomes zero on p meridian sections and on n-p parallels. This is a tesseral figure. 
For a general value o f p ,  

and 5 becomes zero on p meridian sections and on n-p parallels. This is a tesseral figure. 

n= 6 
TESSERAL 

SECTORLQL 

FLUTED (plateau expenment) 
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We obtain ellipsoidal equilibrium figures in the vicinity of a Maclaurin spheroid by 
taking 

R4= V(p2-b2)(P2-C2), R7'=P2-a!1y RE= p2 - ( ~ 2 ,  

where a1 and a 2  are the roots of 

1 1 +-+-- - 0, 
1 

a-a2 a-b2 a!-c2 

anda2  > a1 > b2 >a2>c2.  ForRk=R4, n = 2 , p = n ,  we haveR$1/3=R&4/5, b=c;  this 
is both a Maclaurin spheroid and a Jacobi ellipsoid; hence it is the bifurcation figure. For 
&=RE, we obtain the same figure rotated through r /4 .  For Rk=R7 we have n=2, p = O ;  
this is also a spheroid-the limiting Maclaurin spheroid. 

e2 a2- c 1  2 
Now 

f"=---=-=-. 1-e2 p2- a 2 s2 

For f + 0, we have p+ w, s+ 03; this is a sphere. As f > 0 increases, the ellipticity of the 
meridian section increases. The first figure we meet for bifurcation can be shown to be the 
bifurcation figure with Jacobi ellipsoid. In fact, we can show that 

RlSl RpSp RpSpi ->->- for p' < p. 3 2n+l  2 n + l  
and 

for n < n'. R$P > RkSk 
2 n + l  2n'+1 

Thus RiSi/(2n+ 1) decreases as the ellipticity of the meridian sections increases (Vkronnet, 
1920). 

EQUILIBRIUM FIGURES DERIVED FROM JACOB1 ELLIPSOIDS 

Such figures must satisfy the two conditions 

and n > 2, k > 8. To satisfy these relations, neither &/R1 nor should always vary in 
the same sense. Consider n= even and take the first class. Then Rk=f(p2) and all roots of 
the polynomialf(p2) are real and contained between a2 and c2. Let a! be the largest root, 
andf(p2) = (p2-a!) (p2-a!1) . . .. Since R4= q(p2-b2) (p2-c2), we have 

p2-a! p2-a! (p2-a1)2 . . ., m > p 2 > a 2 > b 2 > c 2 .  
.- 

To satisfy our conditions, all roots a! should be contained between b2 and c2. By Klein-Stieltjes' 
theorem, there is one and only one polynomial among k +  1 polynomials of order n = 2k such 
that all its roots are contained between b2 and c2. Hence there is one and only one ellipsoid 
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of bifurcation for any value of n; that is, of class I for n even and of class I1 of the 
form R =  Y v z u ( p z ) ]  for n odd. 

For n=2, we have found the bifurcation ellipsoid at the junction with a Maclaurin 
Spheroid. 

For n = 3  we have R k =  ( p z - a ) ,  b > a>cZ.  We have 

This is a pear-shaped figure (Poincar6,1885a, 1902a; Liapounov, 1884). 

X X 

Darwin (1902) and Humbert (1918b) made the numerical computation. Let the three axes of 
the bifurcation Jacobi ellipsoid be A, B, and C, and put ABC=l; then ~ ~ ~ 0 . 5 7 4 5 3 ,  
AIC = 0.3451, B/C = 0.4323. 

For n=4, we have 

and 

= E l  (- X 2  +- y2 +--1) 2 2  (7+- X 2  r” +--1); 2 2  
a1 - a2 cyI - b2 a1 -c2 az-a az -b2  az-c2 

AlC=0.2575, BIC=0.2970, a1=0.1142, and az=O.7324. 

The figures for n = 3 , 4  were computed by Liapounov and Humbert. The figures for n = 5 , 6  
were computed by Humbert (l915,1915a, l916,1917,1918,1918a, 1918b, 1919), referring to 
new recurrence formulas for computing Lam6 functions of higher order. 
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-x ,x 

For n = 5  we take R =  v ( p 2 - c 2 )  ( p 2 - a ~ ) ( p 2 - - a 2 ) ,  with a1=0.4539, a~=0.6545. 
We obtain AIC=0.1678, B/C=0.1810. 

For n = 6  we take R =  (p2-a1)  (p2-a2) (p2-az) with al=0.080, az=0.423, a3=0.869. 
We obtain A/C=0.140, B/C=0.148. 

We thus see the ellipsoid of bifurcation becomes more and more elongated as we proceed 
to a higher value of n. Poincar6, from his analytic expression in the form of the series of 
Lam6 functions, considered the pear-shaped figure to be stable, but Liapounov working inde- 
pendently proved it to be unstable. The complete works of Liapounov are described in 
chapter VI. 

Appel(1910,1913, and 1919) transformed the problem to the solution of an integral equation 
of Fredholm’s type and proved the existence of the solution. Rotating figures due to surface 
tension were discussed by Globa-Mikhailenko (1916, 1919) and Charrueau (1926). 

DARWIN’S ANALYSIS 

Darwin (1901,1902,1903,1910) denoted the three roots of 

where 
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The Cartesian coordinates are written 

Corresponding to spherical functions P:, Qf Darwin wrote 81, @:, for both p and u, and 
corresponding to spherical functions :G sp he putM f , $  f .  When k is imaginary, they become 
respectively P f ,  Q f ,  Cf, Sf.  Table I shows eight classes. 

TABLE I. - Eight Classes as Distinguished by Darwin 

0 or EEC 
AB or EES 
A ooc 
B 00s 
C OEC 
ABC OES 
CA EOC 
CB EOS 

even 
even 
odd 
odd 
odd 
Odd 
even 
even 

even 
even 
odd 
odd 
even 
even 
odd 
odd 

cos 
sin 
cos 
cos 
cos 
sin 

sin 
cos 

Let I/= uo be the surface of the ellipsoid; then the potential is expressed as 

The distorted ellipsoid is written 
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The stability coefficient of Poincarb is written 

By such laborious computation, Darwin concluded after Poincarb that the pear-shaped 
figure was stable. But in his development, he missed a term in his expansion which exceeded 
numerically the preceding term. Actually the pear-shaped figure is unstable, as was proved 
by Liapounov. 
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CHAPTER V 

Theory of Jeans 

METHOD OF JEANS 

Jeans at first considered the stability of equilibrium figures of a cylinder rotating around 
its axis (Jeans, 1902). He proved that the two-dimensional analog of the pear-shaped figure is 
unstable, in opposition to Poincarh’s conclusion for three-dimensional figures. He then 
studied three-dimensional figures without heeding the convergence of the expression (Jeans, 
1915, 1916,1919). 

Take the reference ellipsoid as 

x2 y2 2 2  -+-+-=I 
a2 b2 c2 

and consider 

The potential at a point (x, y, z )  because of this solid ellipsoid is expressed by 

where A is the root of f ( x ,  y, z; A)  =O and 

(141) 
rabcp 

+(A) = -- A=v(a2+A)[b2+A)(c2+A).  A ’  

Suppose that f(x, y, z; A) = 0 is distorted to F (x, y, z; A) = 0. Then under what condition 
can the potential be represented by the form 

97 
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where the lower limit of the integral A is the root of F ( x ,  y, z; A) =O? At all points in space 
F should satisfy V 2Ve=0, V 2 V i = - 4 ~ p ,  or 

V2Vi=Jom $(A)V 2FdA. 

If F satisfies 
aFa x I,” $(A)V 2FdA+$(A) C- -=-4~p  axax 

at all points in space, and if at A=w we have 

then equation 143 reduces at A=w to 

JOm $(Al l7  2FdA=-4rp. (145) 

If F satisfies equations 143 and 1 4 ,  then equation 145 is also satisfied at dl points in space. 
Subtracting, we obtain 

aFaA 1; $(A)V2FdA--$(A) x - - = O .  ax  ax 

Hence V2Ve=0, V2Vi=-4rp are satisfied; A is determined by F=O. With 

equation 143 is written in alternative form 

A solution of this equation such that the second terms vanishes at infinity defines the boundary 
of a solid whose potential is written in the form of equation 142. Certainly an ellipsoid F = f 
satisfies this condition: 

is identically satisfied by the relation 
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( 3 = - 4 %  af. 

To obtain a more general solution, we put F = f +4; then the condition for 4, with A= a2 + A, 
etc., becomes 

Our problem is to solve this equation. Jeans put += u+ fv and obtained the following 

(150) 

equations for u and v: 

I," +( A)V 2(  u + fv) dA + 4+( A)v = 0, 

Consider equation 150 first. Note that we must have v =  0 when h=O. Take the boundary 
of the distorted ellipsoid to be 

then we should have ~ A = O = U A = O  since v=0 for A=O. From substituting equation 141 for 
+(A) ,  we obtain 

J"' [V2u+fvZv+4 (zzG+g)]+=O, x av 
(153) 

where A' is the value of A satisfling f + 4 = 0. The most general way of solving this equation 
is to put 

a@ v2u+fv2v+4 E--+- =A-, ( A a x  x a v  ah  ah  (154) 

where w is any function of x ,  y, z, A, that vanishes for A =  A' and also for A=O. Expand v in 
powers off:  

(155) v=w+f"+f2w''+. . .+fw(n)+. . .; 
substitute on the left-hand side of equation 154; and equate the coefficients of successive 
powers off. 
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The indeterminate function B should be chosen so that 

8=”(&) A l + v  [w1+2fw”+ . . . + (n+ l)fnw(n+l)+ . .. .I. (157) 

Thus we obtain the solution v of equation 155 by solving equation 156 so that w= w‘ = W“ . . . 
= w ( ~ ) =  . . . = 0 for A=O, with 9 given by equation 157. 

Next we turn to equation 151 and write 

then in the new coordinates with f = - ul(1 + v) , we obtain 

This equation gives u/ (1 + v). We know v; hence we obtain u and the unknown quantity Q, and 
hence F. 

Now Jeans expanded u/ (1 + v) in powers of a parameter e: 

U 
-=eg1+e2g2+ l + v  . . . .  

Substituting this expansion in equation 159 and equating successive powers of e give 

Put gl = P(Q, 7, c ) ,  and write aP/a[= Pe, etc., and A =  lla2 - 114 etc. Then, 

. . . .  
Also, put u = eul + e2u2 + . . . , v = evl + e2112 + . . . , w = ewl + e2w2 + . . .; then we see 
that ul=g~=P,u2=g2+v lg l ,u3=g3+v lg2+v~g l ,  . . . ; ~ ~ = - D P / ~ , ~ z = D ~ P ~ / ~ ~ - D Q / ~ ,  
. . .; and 

where 
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Write 4=e+1+e242+  . . .; thus, 

cp,=ul+fwl+f2w:+ * - 
1 1 ( f /4 )3D3P+ . . ., 

(Z2) (32) 
= P -  ( f j 4 ) D P + 2 ,  ( f j 4 ) 2 D 2 P -  

42 = u2 + fvz 

) ( 1536 D2P2-i  DQ +fz -1 
4=41+42+. . . . 

On the boundary h=O, we have 

c#m,=ePo+e2Qo+. . . . 

This value of $ 0  can represent a general distortion of the fundamental ellipsoid. Jeans took 
a distorted ellipsoid to be of the form 

x2 y2 2 2  
- + - + + - ; ; - 1 + e P o + e 2 Q o + .  a2 b2 c . . = O  

and the potential to be 

~ l = P - ~ f D P + ~ ( ~ f ) 2 D 2 P  . . . . 
Put 

In order that equation 162 be an equilibrium figure, Vi+w2(x2+ y2)/2 should be the free 
surface. 

For e = 0, we have 

with 

8 = 2 (  1 - ~ ) / [  a b c ( $ + ~ + 2 ) ] .  1 1  
2-P 

For e # 0, we take 

I," $,!- dX= 8P0 
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instead, where V 2 P o = 0 .  In order to obtain a new bifurcation figure, we put 

Then we obtain the condition 

where 

AABC ' c2=[ %, AA2B 

From equation 166 we obtain, at first, 

3ff  P Y -+ -+-=0 ,  
a4 b4 c4 

which is the condition that Po shohld be harmonic. Next we obtain 

-- 2e [ c l ( b Z + c 2 ) + c 2 ( 3 u 2 + c 2 ) + c 3 ( 3 u 2 + b 2 ) ] + ( ~ ) 2 = 0 .  (1671 
U 2  

From equation 165 we obtain 

The ratio a: b :  c for the bifurcation figure is obtained from equation 167 with this value of 8. 
Jeans then proceeded to prove the instability of a pear-shaped figure by computing 

the terms up to e3, without heeding the convergence of the expansion. According to H. F. Baker 
(1920, 1926), the convergence of series expansions similar to Jeans' has been proved by 
Liapounov, and Jeans' series consists of terms in each of which he employed only a few first 
terms of the infinite series expansion in Lam6 functions. 

OTHER EQUILIBRIUM FIGURES 

Jeans considered also tidally distorted masses and the problem of double stars after 
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Darwin 1910 (see also Glauert, 1915; Walton, 1914) and extended the study of the equilibrium 
figures of compressible fluid after Roche (Jeans, l917,1917a, 1919 (see also Lyttleton, 1953). 

Problems of Saturn’s rings as a liquid mass are treated by Kowalewski (1888); Poincarh 
(1885, 1885a); Levi-Civita (1908, 1912); Viterbi (1909, 1910); Tisserand (1880, 1889); and 
Klumpke (1895). 
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CHAPTER VI 

Theory of liapounov 

THE FUNCTIONAL EQUATION 

The problem, how to determine equilibrium figures in the vicinity of the known ellip- 
soidal figures, is called Tschebyschefs problem. Liapounov (1884, French translation 1904, 
and 1959) solved the problem and found the pear-shaped figure unstable, whereas Poincark 
(1885) found it stable. So Liapounov further discussed the problem in great detail and pub- 
lished several voluminous papers entitled “Sur les figures d’kquilibre peu diffkrentes des 
ellipsoides d’une masse liquide homoghe douCe d’un mouvement de rotation,” in the MCm. 
Acad. Sei. St. PCtersbourg, part I ;  1906, pp. 1-225; part 11, 1909, pp. 1-202; part 111,1912, 
pp. 1-229; part IV, 1914, pp. 1-112 (also l905,1908,1909a, 1916,1959). 

He took as the three axes of the ellipsoid m, m, 6, ( q  2 l ) ,  so that the 
surface is represented by 

x= sin 8 cos Q, y= m sin 8 sin Q, z= 6 cos 8. (168) 

A distorted figure is represented by 

x= sin 8 cos JI, y= sin 9 sin 9, z= cos 8. (169) 

The equation of the free surface is, with w$2=&,, 

U +  (&+r])(p+cos2 Q+q sin2 ++e) sin2 O=constant, \1W 

where r] is a function of a certain parameter a ,  and r] = 0 for a = 0, that is, for the original 
ellipsoid. The volume element dr is expressed by 

where 
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With r = D ( p + t ,  p + t ’ ) ,  the distance between two points @+t, 8, Ji) and @+e’, e’ ,  J i ’ ) ,  
we have 

where 

l r @ ( ( p )  is the potential of an ellipsoid with three axes my m, l/is and it is known 
that 

s o  far as 151 < p, we can develop @ ( p +  5) in powers of 5: 

Denote the angle between (e ,  J i )  and ( e ’ ,  J i ’ )  by p; then, so far as 

e + g  < 1, 1 1 J l  <e, 15’-51 < g ,  
I P  2 p 4 2  (1 - cos (b) 

we can develop S ( E )  uniformly for all values of 5, e‘,  Ji’ in the form 

S(E)=SIE+S2€2+ . . ., 
or, putting E =  1, 

where 
s=s,+s2+. . ., 

S ( E )  = lim S(u, E ) .  
u = p  
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For n= 1, our expression [a@(u, p) /du] f ;  should be added on the right-hand side. Let 

then, 

for u < p. The condition necessary for the original ellipsoid to be an equilibrium figure is 

( p + I ) ( L - f i o ) =  ( p + q ) ( M - f i o ) = p N .  (172) 

Let 

and D ( p ,  p )  = D,  the distance between two points ( p ,  +, 0 )  and ( p .  +', 6 ' ) ;  then, 

Substitute these in equation 170 and note that, the ellipsoid being an equilibrium figure, we 
have 

Uo + . R o  ( p  + cos2 I/J+ q sin? +) sin2 e= constant. 

Then we obtain the fundamental functional equation: 
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R H 6 - L  I "'5;p"' =- W+ constant, 
4T 2 

The volume should be constant, and the center of mass of the new figure should be at the 
origin; the principal axes of inertia should be on the x- and y-axes. These conditions are 
expressed by 

The latter two equations can be written 

HC cos 0da= 0, / HC sin2 6 cos 2$du=O. I 
LAME FUNCTIONS 

Put 

Lam6 functions are the solutions in the form of integral polynomials in x, of 

For each value of P such as P n , o  > P n , l  > . . . > Pn,zn, there corresponds a solution En,o(x), 
. . En,zn(x) 

s 

s 

s 

s = 3 (mod. 4) : E n s ( x )  =P- e, 

0 (mod. 4) : E , l s ( ~ )  = P ,  

1 (mod. 4) : E n s ( x )  =P-, 

2 (mod. 4) : E n s ( x )  = P M ,  

where 
P=cfl*-c1x"-2+. . . (m=n, n-1,  n-2). 
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For example: 

where k"> k' are the roots of 3 k z - 2 ( 1 + q ) k + q = O .  
Lam6 functions of the second kind are 

Write 

then equation 173 is written 
1 
3 R = -  E l o F l o .  

Eliminating from equation 172, we obtain the relation between p and q for a Jacobi ellipsoid 

dt I," -- t:t, ('+ (' + I," ( t  + 1 )  ( t  + q ) A  ( t )  =" 
or 

We have relations of the form 

A =  V p ( p + l ) ( p + q ) '  (179) 
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For q-+ 1 ,  u 2 > p 2 ,  we have, according as s=2k  or s=2k-1 :  limElts(p)=Pnk(cos e), 
lim Ert,2k (v) = cos k$, or, lim ER,Bk - 1 ( u )  = sin k$, lim Ens(u) = PIIS  (u) , lim FW(u) =: Q,trc(u), 
where 

Note that 

BIFURCATION FIGURES 

From equation 174 we proceed by successive approximations for calculating the unknown 
quantity 5. In our first approximation, we consider 

where 

and 2 is known on the surface. Multiply by Ens ( p )  Ens ( u )  d a  and integrate over the surface. 
From equation 179a, we obtain 

For the values of n ,  s satisfying Tlls=O, we have J ZEns(p)E?a(V)da=O; n= 1 ,  s = O  is one 
of such cases. For n = 2 ,  s = 3 ,  we have the Jacobi ellipsoid, and T2,3=0. For such special 
values of m, r which make Tmr=O, we have J Z E ~ j ~ , ( p ) E l l , , ( u ) d ~ = O ,  and 

/ HzE,,(p.)E,,(v)do (183) 

can take an arbitrary value, while for any other pair of values n, s, 

takes a definite value; thus z is determined. 

soid from which we start. Assume that 
Take a very small parameter cy; for a=O the figure is supposed to reduce to the ellip- 

. .  
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.) 

or 

F l < l ,  IC'-Cl <& 
P 2p V2(1-cos $0) 

(188) 

where 1, g are constants, which can be taken as small as we please as long as a is sufficiently 
small (the left-hand sides vanish for a= 1). It is proved after a long, laborious computation 
that gll is a fixed number. 

Now our problem is to see whether there exists a new equilibrium figure slightly different 
from the Maclaurin or the Jacobi ellipsoids under the conditions of equation 185. Denote the 
ellipsoid from which we start by Eo. Let the new figure be of the same volume, its center of 
mass be at the origin, and its principal axes. of inertia coincide with Eo; that is, equations 175 
are satisfied. If the center of mass is at the origin, we have 

If the principal axes of inertia coincide with the coordinate axes, we have 

1 H{da= Io, I H{ cos Bda= II, I HC sin2 6' sin 2$du= I 2 ,  (189) 

or 

where Io, 11, 1 2  contain terms of degree higher than 2 with regard to {. 
Suppose that the solution of the fundamental equation 174 is 

where a m r  are suitably chosen constants, and z satisfies 
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Suppose further that TtJt,=O. For such pairs of m, r, we see that the solution z of equation 174 
satisfies 

where Lo, M, L are sufficiently small constants, tending to 0 with 1 2 ,  or with cy. We seek for 
the values of amrll that do not tend to zero with c y ,  except am, am; note that TOO, Til ,  TIZ cannot 
become zero. 

Liapounov at first proved the theorem that an equilibrium figure which can be derived 
from an ellipsoid has at least two symmetry planes. 

SUCCESSIVE APPROXIMATIONS 

We start from Eo with and consider an ellipsoid E with QO + 7.1. We seek equilibrium 
figures with the same volume as E ,  the same center of mass, and the same principal axes 
of inertia. The conditions are given in equations 186, 187, and 188. But under this condition 
we cannot have 

H@,,,,z~(EL.) E m , z k  ( V I  da= 0. 

Write 

The fundamental equation 174 can be written 

RHz -G 1 7 -  H’z’dc’-Z+constant, 

It can be proved that 

d m ,  2k ( E L . ) E ~ ~ , z ~  ( 
H 

can be taken as a first approximation to (. 
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If we stop at the first-order approximation with regard to 5, the equilibrium figure we seek 
is 

E i r r , z k ( P ) E m , Z k ( V )  is of degree m with regard to sin 8 cos JI, sin 8 sin JI, cos 8. It is recalled that 
the expansions employed by Jeans are of such nature as Baker remarked. 

The equilibrium figures are referred to the ellipsoid E in the above. Now we must refer 
them to the original ellipsoid EO. At first the volumes of E and EO should be equal; that is, 

We have further 

t/p0+1+50 sin eo cos J I o ~ V G  -sin e cos JI, 
Vpo + q + 50 sin eo sin $0 = V i G  sin e sin JI, 

V j G &  cos eo= V i G  cos e. 

(i97) 

We have supposed that, as a and q tend to zero, the equilibrium figure tends to EO; also E 

tends to zero with a and q. 
The important part of Liapounov's work is the proof of the convergence of the process of 

successive approximations. 

Put 

where 5 is a function of 8 and JI. Put 1crs1 < pl,. Liapounov proved the convergence of 2,1rsdqs  
for sufficiently small la1 and 171. Put 1[rs'--5rsI < 2 ~ g r s V 2 ( 1  -COS (0). He also proved the 
convergence of 2,grsarqS. Then he constructed a majorant series for I U - U O ~  in the form of 
the expansion in powers of 1 and g of the function 

where 

He also constructed majorant series for W and 

W'- w , 
2P1/2(1-c0s q) 

and proved the convergence of the series he employed. 
Now we compare the parameters p ,  q of an ellipsoid satisfying T,,,2k=O(m- k=even) 

to those parameters for E,,, by taking 5 as the solution of equation 174 with the conditions 
of equations 186, 187, and 188. From the fundamental equation, together with T l n , 2 k = 0 ,  
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we obtain 
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Wl=q(p+ cos2 Jr+q sin2 $) sin2 8, 

WZ = qgl sin2 8 + U2, 2, 

- 7  . .  
Wn=q[n-l sin2 8+ U2, n+ U3, n+ . , . + Un,n. , 

1 

I 

W I  is a function of 8, Jr; Wi contains &, s < i. If we compute &, s < i, successively, we obtain 
Wi as a function of 8, Jr. Similarly, Ii contains 58, s < i, I I = O .  Hence we can compute 61,  

5 2 ,  . . . successively from 
1 H'tn'dd 

= Z + constant, 
I D  

RH[%-- 4T 

This equation has the form of equation 180. 
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The next step is to make it satisfy 

From this equation, the parameter a is determined. In order to satisfy this equation, the 
equation 

should be satisfied by the pairs (1, O ) ,  ( 2 , 3 ) ,  ( m ,  2k - 1), ( m ,  2k) for ( r ,  s), owing to the con- 
dition Tr,=O for such pairs, which are satisfied actually. Hence {n is determined. For the 
fourth pair, we know that it is satisfied by equation 202. 

After a long discussion, Liapounov proved the convergence of the series {=Z{n. From 
the second step, we see A= 0 from equation 200 or 

By the definition of Wn in equation 204, we see that there is no nonellipsoidal equilibrium 
figure starting from Eo either for m = 2 ,  k=O,  or for m= k = 2 .  Thus Liapounov reached the 
conclusion that, in order that there may exist a nonellipsoidal equilibrium figure differing 
from Eo as much as we please (where Eo may be a Maclaurin spheroid or a Jacobi ellipsoid), 
it is necessary and sufficient to have 

Here m > 2,  and m - k is even; m - k cannot be zero for a Jacobi ellipsoid. Equation 207 
determines uniquely the starting ellipsoid Eo. 

Such an equilibrium figure has a symmetry plane perpendicular to the rotation axis and 
at least one more symmetry plane through the rotation axis. If Eo is Maclaurin’s, the equilib- 
rium figure is one of revolution for k =  0 and has k symmetry planes through the rotation axis 
for k # 0. If Eo is Jacobi’s, it has two symmetry planes through the rotation axis for m even 
but only one for m odd. 

Let z be the rotation axis and xz be the symmetry plane. If Eo is Jacobi’s, the surface of 
the equilibrium figure is represented by 

z= cos 8 = V q ,  
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where l/pis t/p+cl, 6 are the axes of Eo, and p ,  q are determined by equation 207. Put 

( P + E L . z ) ( P + V 2 ) 5 = C Y E m , z k ( C L ) E m , 2 k ( V )  +5; 

then 6 should satisfy 

with a= constant for any value of a. Then there exists one and only one equilibrium figure with 
the same volume as Eo such that the greater of I 5 I and 

1-cos (c 

is sufficiently small; 6 is expressed by a positive integral power series of a,  and the series is 
absolutely and uniformly convergent for all values of 8, $ as long as 1 a 1 is sufficiently small. 

DERIVED FIGURES 

Part I1 of the work by Liapounov contains the discussion in particular of the figures 
derivable from Maclaurin spheroids. 

A = 2 ArSargS. 

In the equations he wrote Aio=Ai, A t t = B ,  Aoi=Ci, Azla+Atzr)+A31(r2+Azzar)+ . - . =s; 
S = O  for a=r)=O, so that Aza2+A3a3+.  . . + ( B + S ) a r ) + C 3 7 3 + .  . . = O .  At first he 
proved that B f 0. If all Ai=O, then there would be a solution such that q = O ;  that is, the 
new figure would rotate with the same angular velocity, but it was proved that there are 
some Ai which are not zero. Suppose that A=AA+l # O  for such a figure; then 
r)=- ( A / B ) a A +  . . . . If A is even, then AIB can have two signs, but if X is odd, AIB has 
only one sign. 

If the figure is not one of revolution, then AZ=O. For m= k=2, that is, for the junction 
of Jacobi series and Maclaurin series, we have A3 # 0. A similar result also holds for m = k= 3. 
It is proved after a long series of computation that there is no pair (m, k) for which A3=0. 
The result is: for k=O, the angular velocity is expressed in the transition from an ellipsoid of 
revolution to an equilibrium figure of revolution in the form 

r ) = r ) 1 a + r ) z a 2 +  . . . ( r ] l#O) ,  

and in the transition to an equilibrium figure not of revolution in the form 

This 5 is developed in a positive integral power of q in the first case and in a positive integral 
power of fi in the second case. There is only one 5 in the first case; there are two values 
of 5, but with the same figure, in the second case. Thus there exists one and only one distinct 
equilibrium figure for a given value of r)  with a fixed sign of r)  for k # 0; that is, r)  < 0 for 
m= k=2. The angular velocity decreases in passing from a Maclaurin spheroid to a Jacobi 
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ellipsoid. A similar situation holds also for 

In the other cases, B < 0; that is, 7 has the same sign as A3. 

SINGULAR ELLIPSOID 

Part I11 is devoted to the discussion of the figures derivable from a Jacobi ellipsoid. The 
solution for p and q of the equations T23=0, T,,, = T,lt,211,=0 (m=3, 4, . . .) is uniquely 
determined for each value of m; m=3 corresponds to a pear-shaped figure. It is proved that 
T3, < T4, < T5, < . . . . Liapounov then computed exactly to four decimal places. 

Let 

then T23=0 is written R -Q=O, where 

with 

Furthermore, 

n 1 1 3  A 3 3 5  - R = U O + - U ~ A + - U ~ ~ ' +  . . ., 
P 2 2.4 P 2 2.4 -Q=bo+-blA+'bzA*+ . . ., A = A ( p ) ,  

with 

R - Q = 0 is written Af( A )  = c, with a0 - bo = c, a,c - b,, = c n ,  

2n+ 1 1 3 3 5  
2n 2n 2 2.4 b l f - -  U , , = L ~ ~ - ~  (n=1 ,  2, . . .), lo+-- LIA+; & A 2 +  . . . = f ( A )  

Liapounov computed an,  b ,  as far as n=24, by estimating the errors of computation at each 
step. Thus he computed for m = 3 the values of 

0.362648151 { < A < 0.362655458 I' 
and the values of the three axes of the ellipsoid with the same volume: 
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Darwin’s value 

1.8856 { ::< a < 1.8856 { i; 1.885827 

0.8150 { < /3 < 0.8150 0.814975 

0.6506 { ;i < y < 0.6506 0.650659 

Similarly he computed these values for m = 4. 
The computation of Tm=O is very complicated: 

Put 

M =  V(1-p2)(q-p2), N=\/(1-v2)(v2-q)’ 

@ ( p ) = ( p + l ) ( p + h , )  . . . ( p + h l l ) = m E ,  

Then 



THEORY OF LIAPOUNOV 119 

E tL+-) 1 E ]  E for m=2n,  
P + l  P + Q  

E +- for m= 2n+ 1; 

T,= 0 is considered a function of two independent variabIes p and q. Then we take p as the 
only independent variable by considering Tm= 0 together with T23 = 0. 

Next, Liapounov computed 

for m = 2n and obtained A2 in a form which is rational in p and algebraic in q; A2 # 0 for any 
value of p or q. It is shown that Q > 0 for the values of p,  q such as T 2 3 =  T,=O, and that 
A2 > 0 for T23= TI,,. He used almost 100 pages to prove A3 > 0 for m=3.  

Let EO be the singular ellipsoid, E7 be a Jacobi ellipsoid slightly different from Eo with 
singular velocity Qo+ q, and F be a nonellipsoidal figure with &+q. The differences of the 
moments of inertia S -Sq, S -SO,  and the differences of the moments of momentum M-Mq,  
M - Mo are negative in the order of q. Hence M and S decrease in the transition to a pear- 
shaped figure. Thus he concluded that a pear-shaped figure is unstable. 

NEW FORMULAS 

In Part IV, Liapounov presented a new formula, which is the starting point of his dis- 

At first he took 
cussion on heterogeneous masses. This was published in two volumes after his death. 

X =  sin 8 cos JI, Y =  sin 8 sin JI, 

but later took the equations of a new equilibrium figure to be 

y = a  7 v - -  1 + (  p+q sin 8 sin JI, 

z= d y q  6 cos 8, 

where p is a function of a that reduces to 0 with a. He expanded 

z = G S f f ' P S ,  G o  = t r ;  

note that a= 1 corresponds to the free surface, and 0 < a < 1 corresponds to one of the level 
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surfaces that are similar and similarly situated with the free surface. A level surface is 
defined by U+ a(x2 + y2) =function of a,  and is represented by 

x’ = IJ;I -sin 8’ cos +’ + p m  
y’ = 6 sin e’ sin +’, 
z’=& IJ;;coS e‘, 

where u is a function of e’, JI’ such that 0 < u < 1 + 1’. 
Put 

then 

Put, further, 

U= (1  + {)Uo+ 2AS. 

. R - - R ~ = ~ ,  O =  (p+cos2 ++q sin2 +) sin2 8, il ao=~, dt grm=~; dt 

then, 

wheref(a) is an indeterminate function of a. The problem is to determine the function {. 
satisfying this equation by a suitable choice of p andf(a).  In order that { shall not become 
infinite for a = 0, we should have 

The second condition fixes p as a positive integral power series of a, vanishing for a=O. 
The first condition gives f ( 0 ) ;  f ( a )  =f( l ) a2  + f ( O )  ( 1  - a P )  satisfies the third condition. 
Substitute these expressions for z’, f ( a ) ,  p, q into equation 209; then equation 209 is ex- 
pressed in terms of <, a, 8, +, and a. The solution { of equation 209 tends to zero for a=O, 
whatever the value of a between 0 and 1. 

Next, expand 
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S n ( n  2 2) is the coefficient of in the expansion of 

Expand f;’ in powers of a such that 

the coefficients J n  being functions of v =  a m .  Then equation 209 is written 

R(=f( l )  - f ( O )  +$ ( l + { ) @ + L  [ J ( a V i - q - J ( O )  - J ’ ( O ) a r n I .  (210) U 

Since the right-hand side is developed in positive integral powers of a and 5 and becomes 
zero for a = 0 ,  equation 210 admits a unique solution 

for a sufficiently small a. Compute the coefficients successively, starting at 51.  Putf(1)-f(O)=c 

F ( a )  . J ( v )  - J ( O )  -J’(O)v+( z @ + c ) v 2 = F ( v ) ,  ‘ = ( R  + c) a2 ’ 
then 

function 6 is developed in powers of a and is a known function of a, 8, $, a; and 5 r  is obtained 
as an integral polynomial of a, sin 8 cos $, cos e. Inserting this definition of 6 in equation 210, 
we obtain 

Putting 
5= ( 1 + 5 ) ‘ b r n .  

a m = v ,  v2[1-{(v)] =a2 

gives 
v2-Q,(v sin 8 cos +, v sin 8 sin $, v cos e) = a2, 

where Q, is a uniform, analytic function of the arguments, whose development begins with the 
second-degree terms in the arguments. Hence, we obtain finally from equation 208 the equa- 
tion for an interior level surface of the equilibrium figure in the form 

with p m= A. The lowest-degree terms in the development of CP are of the form 

375-031 0 - 71 - 8 
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where L, M, N become zero for a=O. Or, if we neglect the terms of order higher than a2, 
the equation for the surface (equation 212) is 

Y2 2 2  

P + l  P+4 P 
(1 -L )  ( X - - h ) 2 +  ( i - M ) - + ( l - N ) - = a 2 .  

This is an ellipsoid with its center at (A, 0, 0); A=O for m even; the ellipsoid is concentric 
with Eo. If m is odd, if Eo is a figure of revolution, and if k(of T,, z k = O )  > 1,  then h=O. 
Substituting our expansion X=At  a+ h2a2+ . . ., we obtain 

m +- 
i= 1 PS-1 P + 4  P 

Put a= 1 for the free surface; then we obtain the equation that was given formerly: 

Liapounov wrote a2= J i 2 d a ,  expanded all quantities in powers of a, and determined 
5 in the form 

Finally, he expressed as a power series of a and then obtained the solution 5 in a convergent 
power series of a. 

In 1917, Liapounov solved the problem by means of spherical functions with the sup- 
position that the level surfaces are homothetic. But if we consider them to be confocal, then 
Lamb functions appear (Liapounov, 1903,1904,1925,1927). 
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CHAPTER VI1 

Theory of Lichtenstein 

NONLINEAR INTEGRAL EQUATIONS 

Integral Power Series 

According to Schmidt (1908), Iglisch 1933), Hammerstein [1930), and Golomb (1934), 
we call an expression 

u(s) .o / /  . . . / K ( s ,  t i ,  . . ., t p )u ( t l )L ‘m( t z )a2  . . . u(t,)apdtl . . . dt,, 

an integral power term of degree m in the argument function u ( s ) ,  where the coeficient 
function K is continuous in a s s s b,  a 6 t l  c b,  . . ., a s t ,  b,  and a3 2 a2 2 . . . 2 a,. 
The product of an integral power term of degree m and an integral power term of degree n is 
an integral power term of degree m + n. 

If we substitute for the argument function u(s) of an integral power term of degree n 
an integral power term of degree m in an argument function v ( s )  , then we obtain an integral 
power term of degree mn in the argument function v ( s ) .  

Denote the integral power terms of degree m in an argument function u(s) by 

W,!, (L), Vi, (L), P,, (:); then we have Wilt ( iu)=p”w,, l  (L) with a constant p ,  and 

W,( S, ) =P~~W,,,  (s) with u(s) = 1. 

Let an integral power term, in which the coefficient function is replaced by its absolute 

value, be denoted by 1 Wlm (”)e then we see that WO(S)  + W1 (;)+. . . +,,(;)+. . . 

(3 
u -’ 

is a regular convergent integral power series @ which represents a continuous function of 

s if the series ]@IO+ 1@11E+ . . . is convergent, where the maximum of the 

absolute value of u(s) ,  Wm (s ), lWlm (i) is denoted respectively by E, lVm, /?VIrn. If the arm- 

123 
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ment function is replaced by an argument function smaller than the maximum of the first 
argument function in its absolute value, then the series thus obtained is absolutely and 
uniformly convergent. The product and the sum of two absolutely and uniformly convergent 
integral power series is an absolutely and uniformly convergent integral power series. 

We extend this to the case of two-argument functions. Consider 

a ~ + a ~ + ,  . . . + a p = m ,  P O + .  . . +PP=n,  

a l+pla  1, . . . a p + p p > l ,  

a* a f f 2 3  . * . > C Y p ,  

where 
p p a &  if ap=av. 

The number of integral power terms of degree m in u ( s )  and of degree n in v ( s )  is finite. 
The product of an integral power term of degree m in u(s)  and of degree n in ~ ( s )  with an 
integral power term of degree rn’ in u(s )  and of degree n‘ in v ( s )  is an integral power term 
of degree m+m’ in u(s)  and of degree n+n’ in v ( s ) .  

With constants p ,  q, we have 

If 

is convergent, then the integral power series 

is also convergent. 

If W(s)=Wo(s )  + W I  + . . . and u(s) = VI ( : ) + V Z  (:)+ . . . are both abso- 

lutely and uniformly convergent such that ri s h,  I VI16 + I 81zfi2 + . . . s h, then the integral 

power series in the argument function v ( s )  obtained by substituting such u(s) in Wi 

is also absolutely and uniformly convergent. 

(3 
(3 

Consider an absolutely and uniformly convergent integral power series H ( S )  = 9 
for ii h, 5 s k, where 
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m m m  

m=O n=O p=O 

The integral power series obtained by substituting these u ( i ) ,  v ( s )  in H ( S )  is absolutely 
and uniformly convergent if u(s)  , v ( s )  are absolutely and uniformly convergent and if 

(Cf., Niemytzki, 1933; Bratu, 1913). 

Inversion 

Now consider the inversion of the integral power series 

in which the series '@ ( iv) is absolutely and uniformly convergent for 12 < h, ij < k ,  and 

Woo(s)  =0, so that '43 (io) = 0. Try to express u(s)  of equation 216 as a function of v ( s ) .  An 

integral power term of degree 1 in u(s)  and of degree 0 in v ( s )  is 

or i 

There are two cases: (1) when there is no continuous function Q ( S )  satisfying 

d s )  - C(s, t )v( t )dt=O, (218) 

that is, for the kernel C ( s ,  t) there is no null-solution (which means that there is no such 
solution that is not identically zero and satisfies the homogeneous integral equation); and 
(2) when there are a certain number of such solutions. 

The Regular Case 

In the regurar case when there is no null-solution of equation 218, there is one and only 
one solution u(s) for a given function v ( s ) ,  if the continuous functions u(s) and ~ ( s )  satisfy 
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u s h', 6 < k' with h' s h, k' s k. Then u(s) can be written in the form of an absolutely and 
uniformly convergent integral power series with v ( s )  as the argument function. 

Proofi Equation 216 with equation 217 can be writteu 

From the theory of Fredholm we can obtain the resolvent T(s, t) such that 

f (s> +/W, t ) f ( t ) d t = c p ( s )  

of the nonhomogeneous integral equation 

Equation 219 is equivalent to 

and 

POl(iJ = PI($ 

then, 

is absolutely and uniformly convergent for z i  < h, V < k. 

Write Vi(;) =PI(:) and solve equation 221 for any value of m by putting 

We then have 

as a formal solution of equation 216. 
It can be shown that there exists kl such that 
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is convergent; that is, the series of equation 222 is absolutely and uniformly convergent 
for 6 s kl.  Hence there exists such a poiitive number h' h, that equation 216 has one and 
only one solution for ii 6 h', V S h'. 

The Bifurcation Case 

In the bifurcation case, when there are a certain number n of the null-solutions of equa- 
tion 218, consider the associated equation 

Q ( s )  - C ( t ,  s)Q(t)dt=O (223) I 
to equation 218. Equations 218 and 223 each have n linearly independent solutions 

and the general solutions are respectively 

with arbitrary constants c1, c2, . . ., Cn. With real or complex functions p ( s )  and q( t ) ,  we 
form 

and put 

The necessary and sufficient condition for E ( s ,  t )  to have no null-solution, is that the determi- 
nants IpwvII, ]lBwvll are not zero. Equation 224 is sometimes called the kernel-transformation. 

Suppose at first that equations 218 and 223 each have only one null-solution. Let them be 
clcpl(s) and cl$l( t ) .  Form 

E ( s ,  t )  =Cb,  t )  +pl(s)ql(t) (226) 

with p1 (s) and q 1  ( t )  such that 

This new kernel E ( s ,  t )  then has no null-solution. Denote the resolvent by G(s, t ) ;  then from 
equation 219, we have 
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Put 

then equation 22% can be written 

or 

(229) 
E(s, t ) ~ i ( t ) d t ] x + P i ( ; ) +  1E: Pmn(iv), 

m+npz 

with 

x= I q l ( t ) u ( t ) d t .  (230) 

We can solve equation 229 for u(s)  with x as a parameter, and the result is 

if 6 6 kl 6 k, ii S hl 6 h, 1x1 S el, (81 > 0 ) ,  where V:(i) is an integral power series of 

degree n in v(s). Function u(s),  considered as an integral power series of x and v ( s ) ,  is 
absolutely and uniformly convergent. Substituting this series for u ( t )  in equation 230, we 
obtain 

Also, write 

then, since L1= 1, we obtain 

This is called the bifurcation equation. If V ( S )  is given, we can obtain the solution of 
equation 216 by substituting each root of equation 233 such as /x I 6 81 in equation 231, for 
i j S k 1 ,  i i 6 h l ,  I x l ~ 8 ~ .  

Suppose that L z  # 0 in equation 233 and put 

Fix a positive number 8 2  S L1 such that 0 < Ix I S 8,. We can choose a nonzero positive 
number kz S kl so that I S z  I 6 av1 with a pure fraction IY for I x I = 8 2 ,  S k z ,  where v1 
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denotes the minimum of IS1 I. The number of solutions of equation 233 that do not exceed 
Lz is given by Kronecker’s theorem 

an integer, which is two in our case. Thus we obtain two solutions of equation 216 for LZ # 0. 
Hence equation 216 has a double bifurcation point at u(s)  =0, v ( s )  =O. 

Next suppose that LZ=Lz=.  . .=Ln- l=O,  L ,#O.  Then an n-ple bifurcation takes 
place at u(s) = 0, v ( s )  = 0. The question is whether the solutions are all real. Let equation 233 
be of the form 

O=Lnxn+Aov(s) + A ~ ~ u ’ ( s )  + A ~ ~ v ( s ) x + .  . . , 
all the coefficients being real; then there are only two solutions if n is eqen and AoLn < 0, 
and there is only one solution for n odd. If equation 233 is of the form Aoov2 +Aolvx+ LzxZ 
+ . . . = 0, then there are two, one, or no solutions according as 

A&-4L2Aoo>0,=0, or < O .  

Next suppose that equations 218 and 223 have two null-solutions, pl(s), pZ(s) and 
q I ( t )  , q z ( t ) ,  and that 

Then form a new kernel E ( s ,  t) by the so-called kernel-transformation 

E ( s ,  t )  =C(s, t )  + P l ( s ) q l ( t )  + P Z b ) Q Z ( t ) .  

Function E ( s ,  t) has no null-solution. Denote the resolvent by E (s, t),  and put 

x = j q l ( t ) u ( t ) d t ,  y = / q z ( t ) u ( t ) d t .  

From 

we obtain an absolutely and uniformly convergent integral power series for v ( s )  , x ,  y: 

(235) 

where E’(:) is an integral power series for v ( s ) ,  if 5 s kl, ii s hl, 1x1 81, Iyl 6 8; with 

suitably chosen positive numbers el, L; ,  kl s k, hl s h. Substituting equation 237 in equation 
235, we obtain 
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where 

The sums on the right-hand sides are an absolutely and uniformly convergent integral power 
series for x ,  y ,  v ( s )  and vanish with v ( s ) .  

Now, since cpl(t) and c p z ( t )  are linearly independent solutions of equation 218, we 
obtain from equation 236 

or 

where 

Bwv=/cpw(r)qv(r)dr ,  P ,  v = l ,  2. 

Intergrating these equations after multiplying at first by ql (s )ds  and next by qZ(s)ds, and 
referring to equation 239, we obtain 

I o=B1lL;o+Blz (L; l - l ) ,  I O=BziL:,+ Bzz(L&- 1).  

0 = B11 (LlO - 1) + B12L01 

0 = Bzi ( L o  - 1 + BzzLoi 

We see from equation 234 that Llo = 1 , Lo1 = 0 ,  Li0 = 0 ,  Lh1 = 1. Hence equation 238 can be 
written 

These are the equations of bifurcation. (See Iglisch, l929,1930,1930a, 1931,1933). Lichten- 
stein (1931) deduced similar results by a different method. It has been generalized to higher 
dimensions (Levi, 1907). This discussion of bifurcation can be applied to differential equations 
in Sturm-Liouville's problem (Falckenberg, 1912). 
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Nonlinear Integro-Differential Equation 
Put 

and consider with 

X v ( t 1 ) Y '  . . . ~ ( t p ) ~ ~ [ D ~ ( t i ) ] @ ' .  . . [ D u ( t p ) ] @ ~  

x V(t1)Y'  . . . V ( t , ) Y P d t l  . . . dt,, 

ao+al+. . . + a p = m ,  P I + & + .  . .+&,=n,  
~ o + y i + .  . .+y,=p, p = m + n + p ,  

an integro-differential equation 

or 

- L ( S ) V ( S )  - K0012(S, t l ) v ( t l ) d t l -  U m n p { U ,  Du,  v). I m + n + p a z  

- 

We have the bifurcation or the regular case according as the integral equation 

4 s )  + K1ooz(s, t l)u(tl)dtl=O I 
has null-solutions or not. 

Lichtenstein first considered simultaneous nonlinear integral equations 

ug;p{u,  v ,  w}=O, U$&&{U, 21, w}=O, 

or simultaneous linear integral-equations 

After reducing them to a single, linear integral equation as suggested by a remark of Fred- 
holm, he discussed the regular and the bifurcation cases for this linear, integral equation 
and then returned to the n simultaneous nonlinear integro-differential equations. 

EQUILIBRIUM FIGURES 

Fundamental Integro-Differential Equation 

Let the coordinates of a point on the surface S bounding the body T (which may consist 
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of several components) of an equilibrium figure be denoted by x=X(.$, q), y= Y(.$, q), 
z=Z((, q) such that 

Denote the Newtonian potential of the body T by V ( x ,  y, 2); then 

V(X, Y, 2)  +e (X2+ Y2) 
2Kf 

is constant on each component of S, where w is the rotation velocity such that w < G f ,  
K is the Gaussian constant, and f is the density supposed to be constant. The resultant of the 
attracting force and the centrifugal force has been shown to be directed inward or zero, 
and z=O and y=O are two symmetry planes whose existence has already been proved. 
Suppose that if we keep the volume constant there exists an equilibrium figure TI with w1 

in the neighborhood of T with w .  Then we should have 

Vl(X1, Yl,Z,)--V(X, Y , z ) = - ( x 2 + Y 2 ) - - ( X ; + Y ; ) + s ,  w2 UT 

2Kf 2Kf 
(243) 

where s is a fixed constant on each component. If T consists of only one component, then 
s = 0. Draw an outward normal u at a point ((q) on S and take ( on that normal; then S1 is 
represented by (=((.$, q, 0 1 ) .  Let the distance of (e, q) from the z-axis be R ,  and the 
cosine of the angle between u and the perpendicular from ( E ,  q) to the z-axis be r. Further- 
more, let (.$, q, (*) be the coordinates of a point referred to the xyz-axis system, so that 
V ( x ,  y, z) = V(.$, q, (*), VI (x, y, z) = VI(.$, q, (*), and let the distance between a point (8, q )  
and a point (.$‘, 7’) be p. The attracting force due to Ton  the point (5, q) of mass 1 in the 
u-direction is frc(d/au)V(.$,  q, 0), and the gravity there is normal to S and equal to 

where + < 0 since the gravity is directed inward. Write Vl(X1, Y1, 21) = U,(.$, q), or 
V(X, Y, 2) = U(.$, 7) when the point ( 6 , ~ )  is on the surface S1 or S, respectively. 

l ) ,  between S and SI, and 
denote it by S + t ( S l - S ) .  A point (e, q, t()  on St 
corresponds to a point (E, q) on S. Denote the poten- 
tial due to Tt (which is the body enclosed by St) at the 
point (4, q, (*) by Vt(e, q, (*), and let the potentialat 
(c, q, t ( )  be Ut(.$, q). Furthermore, let pt be the angle 
between u and the outward normal at ( E ,  q, t ( )  to St, 
dui be the surface element of St at (e’, q’, t(’), and 
Si be the angle between u and the outward normal 
to St at (.$‘, q’, t ( ’ ) .  The equation for S is x=X( t ,  q), 
y=Y(.$, q), z=Z(.$, q), and the equation for St 
is x = X + a t ( ,  y=Y+ bt(,  z=Z+ct(, where a, b,  c are the direction cosines of u. Thus 

We consider a one-parametric family of surfaces St(0 < t 

o X 
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It can be proved that U1- U is uniformly convergent for sufficiently small 

133 

so that 

where 

In particular, for n= 1, we have 

It is proved that 

and also 
I U@)+U(3)+ . . . I = 191, 

are all bounded by < 3/62 with a finite positive constant y ,  if 

Write 
wf - 69 

2 K f  
-- - - A  
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and note thatX,2+ Y,2= R2+2Rr5+ (a2+ b 2 ) 5 2 .  Then, from equations 249,247,243, and 2 4 ,  
we obtain our fundamental nonlinear integro-differential equation for determining 5: 

This equation is of a form.similar to that of Liapounov. 

Existence Theorem 

The linear homogeneous integral equation 

$5+/ L t ' d d = O  ( q < O )  
S P  

(249) 

has at least two linearly independent null-solutions if S is not a surface of revolution around 
the z-axis. If S is a surface of revolution around the z-axis, then there exists always only one 
null-solution. The proof is given by displacing S by a small amount parallel to the z-axis, 
and then rotating S through a small angle around the z-axis. Such null-solutions u1 and u2 
satisfy 

If we displace a nearby equilibrium figure SI by a small amount parallel to the z-axis, or if 
we rotate it through a small angle, then we obtain the same equilibrium figure. Hence we put 

in order to fix the position of SI. When S is a surface of revolution, then u2 = 0, and equation 
252 is automatically satisfied. Put 

1 1 
-= $'(uIu; + uzui) +--N 
4P $ (253) 

and let y=O, z=O be the symmetry plane of S. Let-u*, cr*' be the image of the point u, cr' 
with regard to y=O; then p ( u * ,  u* ' )=p(cr ,  u'), uI(u*)=uI(cr), uz(cr*)=-m(cr), 
$(cr*)=$(u). Hence N(u*, u*') =N(cr ,  r'). Let cr*, a: be the image of the point u, u' 
with regard to z=O; then N ( u , ,  cri )  =N(cr ,  u'). Referring to equations 251,252, and 253, 
we transform our fundamental equation 248 into 
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Our next problem is to determine whether equation 249 admits any null-solution other than 
u1 and a. 

The Regular Case 

Suppose that there is no null-solution, besides u1 and Q, of equation 249. By the well- 
known theorem, no null-solution exists for $(+I N(’dv‘=O.  

S 
(255) 

Making successive approximations, we obtain the solution for equation 254 by solving the 
following set of equations for 5 1 ,  52, . . . : 

$(I +I N(;du’ = s - R2A, 
S 

$b+/sN(ldvf= r I { A , s , ( 1 ) ,  

$&+I S N ( i d v f =  I1 { A ,  s, (z}, . . . . 

It can be proved that the series 

is convergent insofar as I A I, I s I are sufficiently small. 

The Bifurcation Case 

Suppose that there are m-2 nd-solutions u3, uq, . . ., u, besides u1, uZ of equation 
249; U I ,  uz, Y, . . . u, are the linearly independent, complete system of solutions for 
equation 249. Since y=O, z=O are the symmetry planes, v ~ ( ( T ) = u ~ ( c T * ) ,  . . ., v m ( v ) = h ( v * )  
are null solutions of equation 249; wi= ui + vi, mi = ui - vi, (i= 1, 2 ,  . . . , m) , are also null 
solutions. If we denote a linearly independent, complete system of null-solutions by w l i ( v ) ,  

( i=1 ,  2, . . ., m), then either wli(u*)  =wl i (U)  or wli(u*)  = -wl i ( v ) .  If S is not a surface 
of revolution, then z4 (v*) = - u2 (v) , and hence W I  = 2u1, = 2z4 ; thus u1 and 4 are included 
in this complete system wli. Similarly we repeat the argument for the symmetry plane z=O 
and find that u1, a are included in the new complete system. Hence we consider u1, uz, 
u3 . . . , um to be our linearly independent complete system of null-solutions of equation 249. 
Let ui be the linearly independent, complete system of null-solutions, such that 

with 

$u,2du=-1 ( i = l , 2 ,  . . ., m). Js 
Suppose that u3, . . ., are symmetric with regard to y=O and z=O. Then 
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satisfies N l ( a * ,  a*’) = N 1 ( a ,  a‘), N l ( a , ,  ai) = N l ( a ,  a‘), and the integral equation 

${+I Nl{‘dcr’=O 
S 

does not have any null-solution. Write equation 254 in the form 

r.  = - Is$’ul{’da’  ( i=3 ,4 ,  . . . m ) ,  (257) 

and consider ri at first to be indeterminate parameters. If Ihl, I s / ,  and lril ( i=3 ,4 ,  . . ., m), 
are sufficiently small, then it can be shown that there exists one and only one solution { 
which is analytic with regard to these m parameters A, s, T i .  

Let H1 be the resolvent for the kernel (1/$)N1.  Since 

J^s HI( a, a’) ui (a’ ) da’ = 0 ,  

we obtain 

s m  1 <=-+ C, rjuj--R2h+ 
J, j = 3  $ 

Since { is symmetric with respect to y=O and z=O, we have 

Substituting equation 258 in equation 257, we obtain m-2 equations for r3, . . . , rm. Since 

J^s$u?dU=- 1, and J^sHl(a,a’)$(a)~i(a)da=O ( i=3,  . . . m ) ,  

from the theory of linear integral equations, the result is 
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We thus obtain the solution rj=rj(A, s) (j=3, . . . , m) which vanishes for A = s = O .  Hence 
the study of equilibrium figures in the neighborhood of the given figure is reduced to the 
discussion of equation 259. 

We divide a linear series into two parts A 5 0 and A S 0, and call each part an arm. 
If we can develop in convergent power series of A in the neighborhood of A=O, then we call 
the linear series regular. A regular series consists of two arms A > 0 and A < 0. 

is the only new null-solution. Equation 259 
is written 

For simplicity, put s=O, m=3; then 

‘(j+Z > 1). 

Let A # 0 andBokr:(k 2 2) be the first nonvanishing coefficient. Then, near A = O ,  we have 

where @(‘I is a power series in A which vanishes for A=O. If k is even, there are two real 
series of equilibrium figures, and two arms, for which - (A/Bok)h > 0. If k is odd, then there 
is only one arm for A > 0 and one for A < 0. 

Next suppose that A =0, BoZ # 0; then equation 260 is written explicitly BO&$. B11r3A 
+ BzoA2+ . . . =O. If B,2, -4BozBZo > 0, we have two regular series crossing each other. I 
If B:, -4Bzo < 0, then there is no real equilibrium figure in the neighborhood, and S is an 
isolated figure. If B:, -4B,&o=0, then we must study the higher-degree terms. 

Suppose that A = 0, BoZ =0, B11# 0, BZO # 0. We have 

B 1 1 r 3 A + B 0 ~ r ~ + B ~ ~ , r ~ ~ +  . . . +A2(Bzo+ . . .)+ . . . = O  ( n > 2 ) .  

In this case we have one regular series 

Bzo 
Bi 1 

r3 = - - A + @(A)  

and two real arms 

for n odd, BIJBo, < 0, and one real arm 

for n even (Lichtenstein, 1917,1920; Schur, 1919. Cf., Lichtenstein, l921,1922,1922a, 1927, 
1928; Holder, 1926, 1929, 1933; Kahler, 1928; Garten, 1932.) The equilibrium figures of a 
heterogeneous liquid mass have also been studied after the fashion of Liapounov (Lense, 1923; 
Lichtenstein, 1923a, 1933, 1933a; Holder, 1933; Maruhn, 1933,1934). 

375-031 0 - 71 - 10 
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Boundary Value Problems 

Consider a boundary value problem which leads to a nonlinear integro-differential 
equation 

where p ( x ) ,  q(x) are continuous, M ( x ,  xl) is continuous and symmetric, and the series on 
the right-hand side is absolutely and uniformly convergent as long as 151, / V I  are sufficiently 
small. 

A homogeneous differential equation 

cannot have more than one solution that vanishes at 0 and 1 and is continuous with its first 
and second-order derivatives. If such a solution does not exist, for example in the case q < 0, 
then there exists Green's function G ( 5 ,  x) = G ( x ,  5) such that it is continuous in 0 s x s 1, 
0 S t 1 and satisfies equation 263 as a function of x in 0 < 5 < 1, x # 6, and also satisfies 
equation 262, i.e., 

its first-order derivative jumps at x = 5, such that 

In this case, a nonhomogeneous equation 

has one and only one solution 

If the homogeneous equation (equation 53) has a solution u(x), such as 

lo' [ ~ ( x ) ] ~ d x =  1, 
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then we have Green's function with an extended sense such that 

139 

Then nonhomogeneous equation 264 is soluble only when 

h(x)u(x)dx=O,  

and the solution is 

5(5) =- /@ (5, x)h(x )dx+cu(C) ,  c=arbitrary 

(Hilbert, 1912). 
When equation 263 has no solution, we obtain, putting 

/ G ( x ,  x ' ) M ( x ' ,  x l ) d x = - N ( x ,  xl), 

G ( x ,  X')Lmnj(x', X I ,  . . ., xp) =-Nmnj(x; x', X I ,  - 9  ~ p ) ,  

a nonlinear integral equation 

{(x) + / N ( x ,  x l ) l ; ( x l ) d x l  =- / G ( x ,  x')U(x')dx'  

- I.. .IN,,,,&; X I ,  xl, . . ., x , ) ~ ( x ' ) &  . . . 5 ; p ~ p ~ f 1  . . . v$pdx'dxl . . . dx,. 
m + n > l  j 

According as the homogeneous equation 

5 ( x )  + / N ( x ,  X l ) S ( X l ) L E 3 G I  =o 

has a null-solution or not, there occurs the bifurcation or the regular case. If the linear integro- 
differential equation 

has no solution vanishing at 0 and 1, the regular case occurs. If the equation has null-solutions, 
then the bifurcation occurs. 

When equation 263 has a null-solution u(x), then equation 261 is written 
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Let the Green function for 

be 6 (E,  x); then, 

According as equation 268 has a null-solution or not, there occurs the bifurcation and the 
regular case (Lichtenstein, 1931). 

Saturn’s Ring 

Lichtenstein applied the theory to the oscillation of the incoherent particles forming 
the rings of Saturn (1923, 1924, 1932, 1933). Consider a mass M at the coordinate origin and 
a constant density distribution of p along the circle C : x+ y2= R2.  The ring rotates with a 
uniform angular velocity o around a fixed coordinate system xyz. The position of a particle 
PO of the ring is defined by R and SIR; we count s along the ring. A disturbing mass is 
supposed to be at distance 8 from the center of the ring, and particle PO is disturbed to a 
position P [ R  +{, ( s + u ) / R ] ;  while 5 and a are functions of s/R and t. Assume that 161 < R ;  
then 

Since the kinetic energy of the particle is 

the Lagrangian equations of motion are 

where Q&, QU8a are virtual work due to gravitation. Let u be the direction of the normal 
to C at P and r be the direction perpendicular to u. Then, for the attraction of the ring to 
the particle at P, we have 

Let the distance between the disturbing mass ,%Jl and P be P; then for this disturbed motion, 
we have 
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For the attraction of the central body, we have 

MK Q F - R , ~ ,  Qu=O. 

Hence the Lagrangian equations of our problem are 

Denote the distance of two points ( R ,  s /R )  and ( R ,  s ' / R )  on C by PO,  the outward normal 
to C by VO, and the tangent by T O ;  then we have 

Also, we have 

Put 

Let /3 be the angular velocity of m, and %, 6 be the polar coordinates of P with reference to 
the fixed coordinates x, y. Then 6= 60 + Pt; 

P2= ( R  + { )2  + IJi2 - 2%(R + 5) COS 

p2= (R+<)2+ (R+&' )2 -  2 (R+g) (R+g ' )  COS 

Write p - o= y. 
Suppose that the solution of equation 269 is of the form 

[=C(S, t ) = Z ( s - R y t ) = Z ( u ) ,  

c = ( T ( s ,  

where Z ( u ) ,  S(u)  are periodic functions of period 2n-R. We have 
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Hence our differential equations become 

L 1 ( Z ,  S )  = R2y2--+2RywdS-vZ d2Z 
du2 du 

dZ yRw- Lz(Z,  S )  R ' y ' a - 2  du 
d2S 

At first we consider 

where F1, F2 are periodic with period 231-R. It is questioned whether periodic solutions exist 
with the same period as F1 and Fz. 

The solution of the homogeneous equations from equation 272 is 

P U  P U  Z ( u )  = B + C cos - + D sin -, 
YR YR 

vu P U  P U  + Cq sin - - Dq cos -, S(u )  = A  + B -  
=YO YR YR 

where 

If we set V2w2 + K I T ~ I ~ ?  = y, then the homogeneous equations admit three linearly inde- 
pendent periodic solutions: 
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u 2Ro u u 2Rw u 
cos R' R' Y Y 

0 ,  R ;  R COS - - sin R; R sin R, - - (274) 

Suppose at first that y 2  # io2+ KT,uIR; then the first solution Z(u)  = 0 ,  S(u)  =r i  is the 
only periodic solution with period 27rR. Let @ ( E ,  u) be the periodic Green function for . 

d2Z Y 

du2 y2R2 z=o, 
such that 

Then the solution of equation 273 is written 

or, integrating by parts, 

2TR 

- @ (5, u)Fz(u)du. r2R2 o 

Evidently the homogeneous integral equations from equation 275 admit the solution Z = 0,  
S = R. Hence, putting Z = 0, S = R ,  F1= F2 = 0 in equation 275, we obtain 

and hence } (276) 1'" 5 @((5, u)du = 0. 

Let the integration domain E be two circuits of (0,27rR); put Z ( t )  = Z ( ( )  for the first 
in the first circuit and circuit and Z((5) = S ( [ )  €or the second. Put @(t) = 

a(() = @(*)((5) in the second circuit, where 
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let K ( r ,  u) be as shown in Table 11. 

TABLE 11. -Integration Domain E Circuits 
. 1st circuit of u [ 2nd circuit of u 

1st circuit of 8: 0 

then equation 275 is written as a single integral equation 

(277) 

The corresponding homogeneous integral equation has a null-solution V((), which is equal 
to 0 in the first circuit and equal to R in the second circuit. The necessary and sufficient 
condition for the solubility of equation 277 is 

or, by equation 276, 

Fz(u)du = 0. 

With the resolvent H ( t ,  u) the solution is 

where c is a constant; c is seen to be 

c = 2rR2 r S ( ( ) d t .  

Put c = 0. Then 

especially, if F l ( u ) ,  Fz(u) are respectively symmetric and antisymmetric with regard to the 
direction O%Jl, that is, if 

then the solution for c = 0 is 
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We apply this theorem to our nonlinear integro-differential equations (equation 271) 
and write 

The integrals in these expressions are shown to be small. If we take for Z and S arbitrary 
functions with period 2 r R ,  satisfying equation 281, then equations 280 and 278 follow natu- 
rally. Thus equation 271 can be solved by successive approximations, starting with Zo=O, 
SO = 0. At the first stage, take 

at the second stage, take 

. . . .  

Finally we obtain the solution in unconditionally and uniformly convergent form 

Next, consider the free oscillation of the ring. Take %!=O, and look for solutions of the 

(282) 

form 

{= { ( s ,  t )  = Z ( S  - Rat) = Z ( U ) ,  U =  U ( S ,  t )  = Z ( S  - Rat) = S(u) 

where Z ( u ) ,  S(u )  are periodic with period 2n-R in u. The equations 

CPZ ds 
du du R26z 7 + 2 R 6 w  -- vZ=O, 

d2S dz R262--2R6~ - = O ,  du2 du 

admit the three solutions (equation 274) with period 2 r R  only when a2 takes the value go 
= 4 o 2 - v = 2 o 2 + K r ~ / R = ~ ( 2 M + 3 r ~ R ) 1 R 2 ;  that is 0, R;  R cos u/R,  (2Ro/60) sin (u /R) ;  
and R sin u/R,  - (2Rw/60) cos (u /R) .  

Examine the solution for 6 = &+ 7) with a sufficiently small 7). Our equations become 



146 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS 

d2Z dS 
du2 du  L(')(Z,  S )  R26: -+2R60w--~Z 

dS MK Z 2  Z3 
+62z(z )  --(-I-T- R R R  . . . ) 

+K Jcprdut[& log; ~a -- 

d2S dZ 
du d u  L 2 ( Z o  S )  E R268 7 - 2 R 6 0 ~  - 

d2S d2S d2S 
= - r)  (2&R2- - 2Rw - R2q2 - R a z z  - du2 du du2 

a ~a - log - - - log 
du du 87 p 870 Po 

We seek the solution of these equations such that 

S ( u ) d u  = 0.  1 2w u [sin i- Z(u)-  - cos - - .S (u )  du = 0,  
60 R 

Denote the Green function for 

d2Z v 

by @a((, u ) ,  such that @a((, 2rR)  =@a((, 01, (a/du)@0(5,  2 r R )  = ( a / a u ) @ ~ ( ( ,  O > ,  
NO(- 8, - U )  = @ o ( t ,  u ) .  Similarly to the former case, we obtain an integral equation 

The homogeneous equation has three null-solutions 

U 2w u 2w u 
w1 = 0 ,  XR;  w2 = BR cos -, BR - sin - e  w3 = BR sin ,- BR - R 60 R' R 60 cosR; 

where 

Form an integral equation with the kernel 

KO@, u )  -w1(5)w1(u) - W Z ( ~ ) W Z ( U )  - w3(5)w3(u) = N ( 5 ,  u ) .  



THEORY OF LICHTENSTEIN 

Put 1:" ( c o s ~ - Z ( ~ ) + -  U 20 sin--S(u) u 
60 R 
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(283) 

then our equations take the form 

4 - u  
R Z ( 5 )  -E-'R2 cos - Z ( u )  du 

Here we have taken the domain to be E ,  the double circuits of 0 to 2vR. Develop the solution 
Z ( < ) ,  S ( ( )  in powers of d, q, and p. Each term of the expansion contains d. Substitute these 
expansions for Z ( 0 ,  S ( t )  in equation 283; then we can express q as a power series of d and 
p. This is the bifurcation equation. These solutions are all periodic, and represent progressive 
waves. The configuration of the particles rotates with angular velocity w + 60 with reference 
to the coordinate system fixed in space. 

For other kinds of periodic solutions we consider Z ( u )  , S (u) to be of the form of equation 
282 but with period 2vRlm ( m  > 1 ) .  In order for them to have a period 2vR/m,  the value of 6' 
should be 

We obtain the solution by putting 6 =a1 + q*, just as in the previous case. 
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APPENDIX A 

Poincarh’s Tidal Theory 

EQUATIONS OF MOTION 

Dynamical theory of the tidal oscillation of oceanic water has been treated by Hough 
(1897) and Goldsbrough (1928, 1929, 1930, 1931, 1933) by the method of forced oscillations. 
Poincark (1896, l903,1910a, b) discussed the theory by use of Fredholm’s theory of integral 
equations in the boundary value problem. The solution can be expanded in generalized 
Fourier series in the eigenfunctions of the boundary value problem, so that whatever the 
shape of the coast and the bottom of the ocean, the expansion will be carried out by numerical 
evaluation, possibly with electronic computers, and all possible modes of oscillation will 
be derived. PoincarC’s theory was applied by Blonde1 (1912) and Chandon (1930) to the Red 
Sea, but not with much success. Jager (1916) considered an ocean bounded by a vertical coast 
and discussed the Green function of the problem and proposed Ritz’s method of variation in 
accordance with Poincarh (1910b). Bertrand (1923) studied in detail the singularity of Poincar8s 
integral equation for a dynamical tide. Proudman (1913,1914,1916~1924,1928,1932,1933; 
Proudman and Mercer 1926,1927; Proudman and Doodson 1924)’ with practical applications 
(1925-1929), based his theory on the quadratic form of an infinite number of variables in a 
manner similar to Hilbert’s theory of Fredholm’s linear integral equations. 

Laplace derived the equations for tidal oscillation which can be reduced to a partial 
differential equation of the second order of the elliptic type. The coefficients become infinity 
at the critical latitude, as well as the integral appearing in PoincarC’s integral equation. 
The difficulty can be avoided by taking Cauchy’s principal value for the integral; also by 
iterating the kernel of Poincark’s integral equation, using Fredholm’s procedure. 

When the period of tide tends to infinity, it is called the statical tide of the second kind. 
The tide of the first kind does not depend on the depth of the ocean, as studied by Laplace. 
The long-period tide of the second kind and the dynamical diurnal and semidiurnal tides are 
studied in the present article. Proudman classified oceans in three classes by the eigenvalues 
of the proper - oscillation (see the criticism by Fichot, 1938). 

Suppose that the oceanic water is a perfect and incompressible fluid with unit density, 
and consider the forced oscillation under the attraction of the sun and moon during the 
uniform rotation w of the earth. Let the coordinates of the earth‘s center in the space-fixed 
reference system be x ,  y, z and those of a point in the ocean referred to the earth‘s center be 
6 ,  7, 5. Denote by Il(x, y, z ,  t )  the potential due to the tidally deformed earth and by P the 
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potential due to the sun and moon. Let p be the pressure in the oceanic water at (x, y ,  2); 
then the force is represented by grad (ll + P - p ) .  If the potential at the earth’s center 
due to the sun and moon is Po, then the force acting on an ocean molecule at ( x ,  y ,  z )  is 
grad Q ,  Q = Il + ( P  - Po) -p .  Denote by w the rotational velocity of the earth and by (XI , Y I ,  21) 

the coordinates referred to the earth’s center in the reference frame rotating with the earth. 
Let 6 be the distance from the rotation axis of the earth to the molecule in question, and 
U, v, w be the displacement of the molecule from its equilibrium position; then the equations 
of motion of an oceanic molecule are 

Let the colatitude 8, the longitude $, and the radius vector p be the polar coordinates of the 
molecule referred to the rotating earth with the earth’s center as origin, and U ,  V,  W be the 
displacement of the molecule from its equilibrium respectively along the meridian, the 
latitude parallel, and the radius vector; then, 

U = u cos 8 cos $ + v cos 8 sin $ - w sin 8 ,  

V = - u sin $ + v cos $, 

W =  u sin 8 cos ++ v sin 8 sin $+ w cos 8, 

and the equations of motion take the form 

dV dR -- 20 cos e - = -, at2 at ae 

at  sin 8d$’ 
a2V aU 
- + 2 w  cos 8-+22w sin 8-=- 
at2 at 

aV aR 
2w sin 8--=--, a2w 

at2 at ap 
__.- 

Assume that the depth of the ocean h ( 8 ,  $) is small compared with the amplitude of 
the tidal oscillation. If there is no discontinuity in the oceanic depth as a function of 8, $, 
then ahlax, dhldy, or ahlae, ahla$ are small, and we see that w, awlaa, awlat are negligible. 
The potential ll is divided into the timely constant part for equilibrium I I r ,  due to the earth’s 
mass, and the variable part Hrr, due to the part that is distorted tidally from equilibrium and 
is regarded as due to the simple layer of fluid disturbed over the equilibrium free surface 
‘c of the ocean; that is, 
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where 5 is the negative displacement in the vertical direction evaluated at the point (e ’ ,  JI’) 
with surface element da’ and the distance r between the points (e ,  JI) and (e ‘ ,  JI ’ ) .  Put 

and let Go be the value of G at the equilibrium surface where g is the gravity acceleration; 
then. 

G= Go-&. 

Dropping the constant part, we obtain, at the free surface, 

R = g< + Il” + ( P  - Po). 

This gives the boundary condition at the free surface. 

ocean, a boundary condition is 
Since the displacement of water molecules should be tangential to the boundary of the 

VdO-U sin edJI=O. 

The equation for the boundary is h ( 0 ,  J I ) = O .  If the ocean is limited by coasts with smooth 
variation of depth, then we take the general boundary condition at the boundary of the 
ocean to be 

hVde- hU sin edJI=O. (-44) 

The increase of the oceanic water through a curve C with arc element (de ,  sin OdJI) is 

IC (hVd0 - hU sin 0dJI) , 

which is equal to 
” *  

where 
da= sin OdedJI, 

integrated over the a r e a s  enclosed by C .  Hence 

IC (hVde- hU sin OdJI) = - 5 sin OdedJI, 
!IS 

or, by Green’s formula, 

Since the relation is valid for any closed curve C ,  we should have 
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a(hU sin 8 )  a(hV) +- 
a0 a?!J ' 

5 sin 8= 

which is the equation of continuity. Equations A1 through A5 were derived by Laplace. 
Denote by cp the inner angle at the moon M of the spherical triangle formed by M ,  the 

zenith 2, and the earth's north pole P on the celestial sphere; denote by x the polar distance 
PM, by p the distance between the earth and the moon in space, by ,u the mass of the moon, 
and by L the right ascension of the moon. Then the principal part of the disturbing action 
of the moon is 

or 

P - P ~ = *  sin2 8 sin2 x cos 2 ( w t + + - ~ )  
4P3 

3P 
4P3 

+- sin 28 sin 2x cos ( w t + + - L )  

where A and Y are given by the perturbation theory when v < w. The variations of p,  x, L 
are periodic, with longer periods than the period of w. 

The first line contains the terms wi:h periods nearly equal to 12 hours, which are called 
the semidiurnal tide; the second line contains the terms with periods nearly equal to 24 
hours, which are called the diurnal tide. The third line contqins terms of long periods. These 
three kinds of tide constitute the dynamical tide. The tide due to the terms of infinitely long 
period is called the statical tide. Since the equations of tide are linear, we can add the effect 
of each term by solving separately the differential equations with each one of the terms of 
perturbation. Since the perturbation is decomposed into complex terms, the forced oscillation 
due to one such term is called an isochronous complex forced oscillation. We consider a 
term F ( 8 ,  +)eQt as the representative. 

We obtain such an oscillation by putting 

U ,  V ,  R ,  5" eiat.  

Equations A1 are transformed by writing R=a2Q,  into 
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- aU-2iwV cos 6= a -, ad? 
ae 

$3 -aV+2iwU cos O=a- sin ea+’ 

a(hU sin e)  I a(hV) 
ae I a$ 4 sin 8= 
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Solving these, we obtain 

The continuity equation is now 

with the boundary condition 
ad? ad? 
an as 

a -+2iw cos 8-= 0, 

where n, s are the normal and the tangent to the boundary curve, respectively. 
These equations become critical at 

a 
402 cos2 O-a2=0; i.e., cosO= A- 20’ 

which is called the critical latitude. For a semidiurnal tide, a! = 2w, and the critical latitude 
is near the pole; for a diurnal tide, a = w, and the critical latitude is near +30 degrees. The 
critical latitude occurs because we neglect centrifugal force. If we transfer the centrifugal- 
force term w262/2 in R to the left-hand side and treat it in a similar manner, a new set of equa- 
tions with different critical latitude such that cos2 f3= [a2 ( a2+w2)  ] / [a2 (3a2 - d) ] will 
appear, where the denominator is always positive for the semidiurnal and the diurnal tides. 

STATICAL TIDE AND FREDHOLM’S EQUATION 

Consider the long-period tide of the first kind due to the terms of planetary perturbations 

375-031 0 - T 1  - 11 
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where the sum can be written 

p 3cos2x-1- - 
P3 

( A  cos at + B sin a t )  
2 C = C -  

Hough (1897) classified the statical tide in two kinds - the first kind deduced from the equilib- 
rium theory and the second kind obtained by putting a = O  in the equations for dynamical 
tide. We consider the long-period tide of the first kind. We neglect in equation A1 the accelera- 
tions 82Uldt2, PV/8t2 and the centrifugal force 2w cos 8 - aV/at, -2w cos 8 - 8U/at; then we 
have dR/d8= dR/a+= 0 from equation A1 and obtain R = k(t) independent of 8, +. Hence 
the equation for statical tide is 

on the ocean with surface Z and 
< = O  

on the continent, where 
r r  

Writing 

and ~ ( 8 ,  +) = 1 on the ocean and ~ ( 8 ,  +) = O  on the continent, we obtain 

The kernal of equation A7 becomes infinite of the first order if the two points (8, +) and 
(e ’ ,  +’) coincide. But, since the integral is double, the iterated kernel is finite (Lalesco, 1910), 
and Fredholm’s method of solution can be applied. Denote the resolving kernel by K (  8, +; O r ,  
+‘; A);  then the solution is 

<(e, + ) = € ( e ,  +)XW + A / ~ K ( B ,  +; 8’, +!; +(c + M W ~ ’ ,  (AB) 

Since the kernel is symmetrical, there exists at least one real and simple pole of the resolvent. 
The potential IT due to the part of the oceanic water which is displaced from the equilib- 

rium state can be regarded as the potential due to the surface distribution of 5: 

Function IT is a meromorphic function with the same pole as the pole of 5 and K .  This potential 
IT satisfies at the surface (Poincark, 1899) 
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an 
aP 

2 -+n=-4 T5, 

where p is the radius vector and { = - A H + x  on the ocean and {=0 on the continent, so 
that {= E (  - An + x) on the whole surface; II is a harmonic function defined by An = 0 inside 
the earth and an 

aP 
2 - + n = 4 7 r E ( A n - x )  

on the surface. 
Let 50 be one of the poles of {(A) and consider 

The potential no due to the displaced mass {O satisfies on the surface 

where, by Green's theorem, 

Hence, 

&(4T€ko- 1)dm 2 0. II 
Thus A0 should be zero or positive, and we obtain 

continent ocean 

Consequently the first pole, if it exists, is positive such that AZ, 2 1 / 4 ~  
Since n(A) is a merqmorphic function of A, it can be expanded 

II= + Ani + . . . + A n n ,  + . . . , 
and satisfies 

an 
aP 

2 - + n = 4 T E A r I  - 47rEX. 

Substituting the expansion of II in the latter equation and zquating the coefficients of various 
powers of A, we obtain 
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Denote Schwarz’s constants by 

Green’s formula gives, on the other hand, 

or, by equation A l l ,  

This gbes a recurrent formula for W p ,  q .  From equation A l l ,  it can be shown that 

which shows that Wo, n > 0. 
Further, by forming 

we see that the quadratic forms 

are both positive definite, and we have 

Integrating the expansion of n term-by-term, we obtain 

W ( h ) = W o + h W 1 + .  . . + h n W n + .  . ., 
and 
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Hence 

The radius of convergence of W(A) is accordingly equal to AI. 

powers of A is A1. In fact, from equation A l l  with n=n,  we have 
It can be shown that A1 is the first pole of n(A) and that the radius of convergence of IT in 

Since the factor of IL-1 in the integrand is singular, we iterate 

If the three points (e, +), ( O r ,  + I ) ,  (err, $ir) coincide, then the second integral becomes infinite, 
at most, logarithmically (Heywood and Frkchet, 1912). Using Schwarz's inequality, we have, 
from the foregoing equation, 

where 

or, from E Z =  E and 

we obtain 

Hence 

so that the series for n(p, 8, +; A )  converges uniformly if the series for does. 
The latter series is convergent in a circle of radius AI. Consequently, the radius of convergence 
and the first pole of n ( h )  is AI. 

Now we expand IT in the form 



158 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS 

By a similar procedure, we can see that the second pole > A1 and that there are an infinite 
number of discrete poles AI,  A Z ,  AS, . . . which are all positive and at least equal to 114~.  
Note that this conclusion does not depend on the form of the continent. Thus the problem 
of statical tide of the first kind has been solved. 

FREDHOLM’S EQUATION FOR DYNAMICAL TIDE 

For convenience, transform spherical coordinates p, 8, $, into rectangular coordinates 
x, y on the geographical map: 

where k stands for the similitude ratio. Dividing u and v by k and denoting the result simply 
by u and v, we obtain the equations 

-_ d 2 U  20, co3 ea”=%, *+2w cos 0-=--, au dR 
a t 2  at  ax a t 2  a t  ay 

and the equation of continuity 

the boundary condition being hudy - hvdx = 0;  or 

2iwah cos 0 
402 cos2 8 - a2 ’ hz= ha2 

402 cos2 0 - a2 ’ hi= 

with the boundary condition 

a-+2iw a@ cos 8-=0. a@ 
an 8s 

Dividing equation (A6b) for 5 by hz, we obtain 

(A6b) 
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a2@ = g( + n”+ F ( x ,  y )  
is transformed to 

where 

with the same kernel K .  This is the integro-differential equation for dynamical tide. Equating 
((x, y )  of these equations, we arrive at 

I h (A13) 
a@ a@ 
ax ay 

A @ + a  - + b  --+&+e K’(x, y ;  x’, y’)@(x’,  y’)dx’dy’=f, 

where 

On the contour C of the ocean, we have the boundary condition 

a@ a@ 
an as 

a-+2io cos8-=0. 

Consider the Green function G ( x ,  y ;  e,  q) defined by the following conditions: 
(1) the function G l ( x ,  y ;  e, q) such that 

for any point x, y inside the domain Z is harmonic; i.e., AG= 0 inside Z. 
(2) G satisfies 

along the contour C of 2. It can be shown that the solution of equations A13 and A14 is given 
by the function @ (x, y )  defined by 
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where a primed function is the function in which x, y are replaced by(, q, and where a’, P’ 
denote the direction cosines of the inward normal of the contour C. Thus the integro-differential 
equation A13 for dynamical tide is led to a Fredholm equation containing simple, double, 
and quadruple integrals. 

Our first problem is to derive the Green function G(x ,  y;  5,q)  , that is, derive the function 
G so as to satisfy 

1 
r a log- 

+2iocose- as‘ 

1 
r 

ff -+2io cos~---=u - an as an 

aG alog- aG 

along C and to be harmonic inside 2. In other words, we are to establish the existence of the 
function V ( x ,  y) which is harmonic inside 2 and satisfies the condition 

av aV 
an as 

ff - + 2 i w  cos O--=x(s )  

along the boundary C. 
It is known that the logarithmic potential 

where p ( s ‘ )  is a continuous function of s‘, a curvilinear abscissa of an arbitrary point from the 
fixed point on C as origin, satisfies the following conditions: 

(1) it is continuous in x, y for all points at finite distances in the plane, 
(2) it is harmonic, so that AV=O at all points except the points on C, 
(3) the inward normal aV/dni and the outward normal aV/ane satisfy 

where JI is the angle between the inward normal and the vector r, and the principal value of 
Cauchy’s internal 
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converges to the tangential derivative uniformly if the radius of curvature of C is larger than 
a fixed number and p ( s )  has its derivative. Such a function p ( s )  satisfies 

This is an integral equation of Fredholm's type, but one of the integrals is replaced by Cauchy's 
principal value. 

Let x, y be two variables in the complex plane,f(y) be a function of y, and C be an 
arbitrary arc of a curve containing the points x and y. Exclude two arcs xu, xb of equal length 
on the curve on both sides of the point x. An ordinary integral 

F ( x ,  h) = 

which is a function of h, tends to a finite limit as h 4 0; then the limit is Cauchy's principal 
value denoted by 

Assume that f(y) is holomorphic in a connected domain D, and construct two closed 
curves M and M' on both sides of the closed curve C with a unique tangent at each of its 
points. Describe a small circle ADBE with radius h and center x. Let 0 be an arbitrary point 
on the closed curve C .  We have 

/ /--- - -, 

/ 
/ 

/' 
I 

I 
I 
\ 

/ 
C / 

/ '\ M' ------ 
Hence, 

Put 

then 

y=x+heiw, f (y)  = f ( x )  +Ah;  

and 
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Similarly , 

where pz (ADB - BEA) = 0 if curve C has a unique tangent at each point. Thus the principal 
value defines a function F ( x )  which is holomorphic at each point of C :  

It can be proved that 

Let &(x) be holomorphic in the band domain D enclosed by two closed curves Q, Q‘  
on each side of a closed simple curve C and outside of M ,  M’. Similarly, draw two closed 
curves P,  P‘ respectively between C, M and C, M ‘ .  Let A (x, y ) ,  B ( x ,  y )  be functions of two 
complex variables x, y ,  which are holomorphic, while x, y vary in D. Put 

Then, 

The four double integrals are expressed after computation by 
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where 

or, by computing the residue at z=x as x varies on C, 

and 

The integral 

' B (x7 Y) A (Y, 2) 
dY,  ~~ 

s c  y-x z - y  

in which x, y, z vary on the same curve C, is equal to 

which is holomorphic in the ring domain between Q and Q'. If the singular integral exists, 
then 

and 
r 

Since B A ( x ,  z )  andfo(z) are holomorphic in the ring domain between Q and Q', each of the 
contours M and M' can be deformed so that both coincide with C. Thus, 

We obtain a fundamental formula (Poincare, 1910b), 

Suppose that the function A ( x ,  y), B ( x ,  y),fo(x) of real variables admit period 0 in 
each of the variables and are holomorphic as x, y describe a small ring domain abutting 
on the closed curve C with unique tangent at each point. Put 
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It can be shown that 

Let A ( x ,  y) be an arbitrary point on C such that x = f ( t ) ,  y=p( t ) ,  and A describe a 
pole y = x as the only singularity; i.e., 

where M o b ,  y ) ,  MI(%, y) are holomorphic. Then, by computation of the residue of Ml(x), 
we obtain 

The function in the parenthesis is holomorphic as x, y vary on the real axis and admits the 
period 0 in x, y. 

Let N ( x ,  y )  be a function similar to M ( x ,  y) , and write 

then, applying equation A19 and A20, we obtain 

where Nl(x) is the residue of N ( x ,  y) at the pole y = x. 
Let A ( x ,  y) be an arbitrary point on C such that x = f ( t ) ,  y=p( t ) ,  and A describe a 

whole circuit of C in the direct sense as t varies from 0 to 0. If M [ x ( T )  y(7)] is an attracting 
point and p(7) is the density at M, then the tangential component along AT of attraction at 
A is 
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The denominator of the kernel of this integral, which we denote by N ( T ,  t ) ,  vanishes for 
t = T.  Let T = t + h and expand x ( T ) ,  xr ( T ) ,  Y ( T ) ,  y ' ( ~ )  in Taylor series in powers of h at 
T = t; then, 

1 x'"' + y'yB+ . . . . 
N ( T ,  t )  =L+- 

7 - t  2 X ' 2 + y r 2  

Thus the singularity of the tangential derivative of the kernel for the logarithmic potential 
of a simple layer is a simple pole with residue 1. 

Suppose that H is a continuous kernel but that K is a singular kernel with a simple pole 
at y = x, and consider the integral equation 

If the integral exists, then it is equal to its principal value, so that 

Any solution of equation A22 is a solution of 

It can be shown conversely that any solution f (x) of equation A23 satisfies equation A22, 
owing to the theorem we have just presented. Hence the process of iteration for the integral 
equation containing such singular integrals is justified. 

Now we return to the solution of integral equation A17. All functions appearing in the 
equation are holomorphic since curve C is regular analytic and periodic in s and S I ,  except 
that sin $/r admits a simple pole of residue 1 at s = s'. 

Let 

1 cos $ A ( s ,  s ' )  =-- , 2iw cos 0 sin + 
Ta! ' I r r  Ira! r '  

q ( s )  = - - X b )  B ( s ,  s') = 

where B ( s ,  s r )  has residue 2iw cos 0/1ra! at s = s'; then equation A17 is written 

p ( s )  = Jc A ( s ,  s ' )p (s ' )ds '  + J B ( s ,  s ' )p (s ' )ds '  + r](s). 
C 



166 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS 

Iterating the kernel by using equation A21 and remembering that 

2iw cos 8 
T f f  ’ lim (s’ - s )B(s ,  s‘) = 

S+ S’ 

we arrive at the equation 

where 

K ( s ,  s”) = A (s, s ’ ) A  (s‘, s”)dS’ + A (s, s ’ ) B ( s ‘ ,  s”)dS’ 

B ( s ,  s ’ ) B ( s ‘ ,  s ” ) d s ’ ,  

I C  II 
+Ic‘ B ( s ,  S ‘ ) A ( S ’ ,  s”)dS‘ + 1‘ 

O(s) = ~ ( s )  + I C A ( s ,  s’)ds’ + 1; B ( s ,  s r ) 7 ( s ‘ ) d S ‘ .  

The factor 1 - 4w2 cos2 e/a2 does not vanish if the ocean does not cross the critical latitude 
(Bertrand, 1923). Integral equation A24 is an ordinary Fredholm equation and admits a solu- 
tion in general. Thus the existence of the Green function G ( x ,  y ;  5, 7) is established. 

The next problem is to integrate integral equation A15. Thus the problem of dynamical 
tide has been reduced to that of solving three Fredholm’s integral equations in succession. 

RITZ’S VARIATIONAL METHOD 

Equations A6a for tide on a geographical map is seen to be 

with the boundary condition 

along the boundary curve. 
hvdx - hudy 0 

PoincarC (1910b) eliminated h from these equations and obtained 

a z i a  = gc + rI” + F ( x ,  y )  , 

with the boundary condition 

(;; 2iw 
cos 8 aia h -+ -) = 0. 
a as 
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Putting @ = @ I +  i Q 2 ,  5= 51 + i 5 2 ,  II"= IIy+ ifl;, F = F1+ iF2 and separating the real and 
imaginary parts, we obtain 

with the boundary condition 

dQ'2 2w cos 0 - ) = O .  d@l 
h -+ a -)=o as ( an CL as 

If we multiply the four equations respectively by S@ldxdy, S@*dxdy, 6{1dxdy, 65zdxdy 
and integrate over 2, then the integral should be zero. This integral is shown after algebraic 
computation to equal the variation SJ of this integral J :  

S J = O ,  

Blondel (1912) and Jager (1916) discussed special cases of this integral of Poincarh 
(1910b). This integral contains h and 7, and it becomes infinite at the critical latitude. In order 
to avoid this difficulty, Bertrand (1923) transformed equation A25 by putting 

2 0  cos 0 aa2 
u1+- = 0, 

a Y  
2wcos 0 aa1 

u2 + - = 0, v2 - a Y  a 211 + a 

with the boundary condition 
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If we multiply these eight equations respectively by - hSu1, - hS-, - hSv1, - hSv2, S@1, 

6@2, S51, S f j  and integrate over the whole surface 2, then we obtain 

The integral J 1  does not vanish. 

1923). 
Another form of the integral can be obtained if we eliminate @ and 5 from J 1  (Bertrand, 
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